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Retrofitting stormwater systems with sensors and controllers will allow cities to be operated as real-time,

distributed treatment plants. Unlike static infrastructure, which cannot adapt its operation to individual

storms or changing land uses, “smart” stormwater systems will use system-level coordination to maximize

watershed pollutant removal and treatment. We illustrate that this vision is not limited by technology, which

has matured to the point at which it can be ubiquitously deployed. Rather, the challenge is much more

fundamental and rooted in a system-level understanding of environmental science. Once distributed

stormwater systems become highly instrumented and controlled, how should they be operated to achieve

desired watershed outcomes? The answer to this question demands the development of a theoretical

framework for smart stormwater systems. In this paper, we lay out the requirements for such a theory. Ac-

knowledging that the adoption of these systems may still be years away, we also present a modeling

framework to allow for the simulation of controlled stormwater systems before they become common-

place. We apply this control framework to two simulated case studies in which stormwater sites are con-

trolled to reduce nitrate loads to downstream water bodies.

Rapid advances in sensing, computation, and wireless
communication are promising to merge the physical with the
virtual. Calls to build the “smart” city of the future are being
embraced by decision makers. While the onset of self-driving
cars provides a good example that this vision is becoming a
reality, the role of information technology in the water sector
has yet to be fleshed out. These technologies stand to enable
a leap in innovation in the distributed treatment of urban
runoff, one of our largest environmental challenges.

Retrofitting stormwater systems with sensors and control-
lers will allow cities to be controlled in real time as distrib-
uted treatment plants. Unlike static infrastructure, which
cannot adapt its operation to individual storms or changing
land uses, “smart” stormwater systems will use system-level
coordination to reduce flooding and maximize watershed pol-
lutant removal. Given the sheer number of stormwater con-

trol measures in the United States, even a small improvement
in their performance could lead to a substantial reduction in
pollutant loads. Intriguingly, such a vision is not limited by
technology, which has matured to the point at which it can
be ubiquitously deployed. Rather, the challenge is much
more fundamental and rooted in a system-level understand-
ing of environmental science. Once stormwater systems be-
come highly instrumented and controlled, how should they
actually be operated to achieve desired watershed outcomes?
The answer to this question demands the development of a
theoretical framework for smart stormwater systems. In this
paper, we lay out the requirements for such a theory. Ac-
knowledging that the broad adoption of these systems may
still be years away, we also present and evaluate a modeling
framework to allow for the simulation of smart stormwater
systems before they become commonplace.

Recent urban floods,1 many of which are driven by flashy
events and inadequately sized infrastructure, are an all too
common example that aging stormwater infrastructure is
struggling to keep pace with a dynamic and changing cli-
mate. While flood control often emerges as one of the most
promising application areas, to illustrate the flexibility of
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Water impact

“Smart” stormwater systems will transform cities into coordinated and real-time controlled treatment plants. Retrofitting existing stormwater elements with
sensors and controllers will allow them to change their configuration to maximize watershed-scale pollutant removal. We discuss that fundamental knowl-
edge gaps must be addressed before these systems become a reality and present a simulation framework to model real-time control of urban stormwater.
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smart stormwater systems, this paper will focus on the im-
pacts on urban water quality.

1 Do best local practices achieve the
best global outcomes?

Pollutants in runoff are threatening the health of down-
stream ecosystems, as evinced by harmful algal blooms, such
as those on Lake Erie2 and Chesapeake Bay.3,4 Simulta-
neously, “dry” regions of the country are struggling to find
new and clean sources of water. By some estimates, the cap-
ture of stormwater in Los Angeles5 and San Francisco6 could
offset the water used by these cities. This, however, requires
at least some level of treatment to ensure that captured
stormwater is safe for direct use or aquifer injection. In the
face of these challenges, novel solutions for stormwater man-
agement are needed.

Reductions in hydraulic or pollutant loads are commonly
achieved via a set of distributed stormwater solutions,7,8 such
as ponds or treatment wetlands. Our body of knowledge on
the treatment potential of these systems is extensive, showing
that significant water quality and hydraulic benefits can be
achieved at the level of individual sites.9,10 Most recently, an
exciting and growing research area has formed around
smaller-scale and more distributed Green Infrastructure (GI)
solutions, such as green roofs or bioswales.11 Most of these
solutions are grouped under the broader umbrella of Best
Management Practices12 (BMPs) or Stormwater Control Mea-
sures (SCMs).13

Given the aggressive adoption of these stormwater prac-
tices, rarely is the question asked: does doing the “best” at a
local scale translate to doing the best at the watershed scale?
Research on this question is limited,14–16 but paints a cau-
tionary picture. Unless designed as part of a coordinated,
city-scale solution, a system of SCMs may actually worsen
watershed-scale outcomes. For example, unless coordinated
at design-time, hydrographs from individual SCMs may add
up to cause larger downstream flows compared to having no
SCMs at all.17 This, in turn, can lead to increased stream ero-
sion and re-suspension of sediment-bound pollutants. More
examples can be given, but there is an urgent need to investi-
gate the scalability of SCMs and to ensure that their function-
ality is tuned in the context of broader stormwater systems.

Even if system-level optimization is used to determine the
placement of SCMs,18,19 it is difficult to guarantee that the
overall system will perform as designed. The sheer variability
in rainfall,20 seasonal pollutant loadings,21 and broader land
use changes22 will always push stormwater systems beyond
their intended design for the “average” storm.23 As such, it
becomes imperative to find a way to adapt to these uncertain
disturbances. One solution relies on real-time sensing and
control. By equipping stormwater elements with control
valves, which can be operated in real time based on sensor
readings, the overall performance of the entire system can be
adapted to achieve watershed-scale benefits (Fig. 1a).

1.1 Existing studies on real-time control

The bulk of existing literature on real-time control of
stormwater SCMs focuses on water quality and hydraulic im-
pacts at individual sites, particularly ponds and basins. These
studies assume that the outlet of a BMP has been retrofitted
with a remotely controllable gate or valve. By strategically
controlling outflows before or during storm events, internal
volumes can be modified and hydraulic retention time (HRT)
can be increased. Jacopin et al.24 demonstrated that deten-
tion basins, typically designed for flood control, can reduce
sediment-based pollutant loading (57% decrease) in down-
stream water bodies by simply opening and closing a valve.
Middleton et al.25 analyzed the water quality response of a
controlled detention basin, observing up to a 90% improve-
ment in TSS and ammonia–nitrate removal. Recent
studies26–28 in Quebec, Canada proposed a rule-based control
logic for a pond, based on rainfall forecasts, to maximize re-
tention time and reduce hydraulic shocks to the downstream
water bodies. These studies reported a 90% improvement in
TSS retention. A comprehensive review of these and other
studies is summarized by Kerkez et al.,29 along with addi-
tional information on how these solutions are deployed in
the field. While these studies demonstrate significant poten-
tial to improve water quality at the scale of individual sites,
the mechanisms behind the removal of pollutants in con-
trolled SCMs remain a research challenge. This is particularly
true in the removal of dissolved pollutants, such as ammonia

Fig. 1 Application of control and optimization methods to the real-time
operation of stormwater systems will be made possible by abstracting
physical models (part a) into system-theoretical representations (part b).
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and nitrate. Furthermore, the scalability of real-time control
must be evaluated to ensure that local benefits do not over-
shadow watershed-scale benefits.

Since the 2000 European Union's Water Framework Direc-
tive,30 there has been an increasing emphasis on integrated,
system-level control of sewer water distribution systems. The
resulting control strategies vary in complexity31–33 and have
since been implemented in a number of urban water net-
works.34 Applying these methods to distributed stormwater
solutions introduces a new set of challenges. However, unlike
in well-maintained sewer networks, the exposed and distrib-
uted nature of stormwater systems introduces complexities
associated with the urban hydrologic cycle, such as infiltra-
tion, evaporation, soil moisture and groundwater dynamics.
Furthermore, one major function of stormwater systems re-
lates to the distributed control of a large variety of solid,
dissolved and emerging pollutants. Control of sewer networks
is often targeted at volume control to mitigate sewer over-
flows or overloading treatment plants. As such, much work
remains to be conducted on investigating how these methods
can be applied to the distributed control of stormwater.

2 Toward a framework for smart
stormwater systems

Many methods have been developed by the operational re-
search and control theory communities to optimize the oper-
ation of networked systems.35,36 Given their inherent non-
linearity and complexity, existing stormwater models are not
compatible with these tools. To that end, our knowledge of
treatment processes and the physical nature of stormwater
systems must first be embedded in a system-theoretical
framework (Fig. 1b). Such a formal and mathematical ap-
proach will be crucial toward developing a system-level un-
derstanding of stormwater. Not only will this framework help
to control future stormwater systems, but it will also create a
foundation to answer critical questions, such as how many
controllers are needed and where should they be placed to
achieve the best system-level benefits? Consequently, how
many sensors are needed and where should they be placed to
help the control system achieve these objectives?

Until sensors and controllers become ubiquitously
deployed across stormwater systems, which may take years to
accomplish, there is enough domain knowledge embedded
in existing models to begin answering these questions
through simulation.

2.1 Limitations of existing simulation approaches

Existing stormwater models can be broadly grouped into two
categories: those that focus on hydrology (including hydrau-
lics) and those that focus on water quality. The former range
across simple routines, such as Muskingum routing37 and
the Rational method,38 to more complex hydrodynamic
models that solve the St. Venant equation, such as popular
packages like SWMM39 and HEC-RAS.40 The latter, which in-

clude models such as HYDRUS41,42 and FITOVERT,43 are
used to simulate treatment processes within individual sites,
such as wetlands and green infrastructure. While some pack-
ages support extended features that model both hydrology
and water quality, much work needs to be conducted to im-
prove their accuracy.44 This often forces a trade-off between
comprehensively modeling system-level hydrology and local-
level treatment.

Pollutant removal in stormwater is a highly complex and
dynamic process. The rate at which pollutants undergo trans-
formation is dependent upon the pollutant type and its inter-
action with a given stormwater element (oxygen concentra-
tion, soil type, biomass, settling time, water temperature,
etc.). Given the complexity of these interactions, popular
stormwater models, such as SWMM, MUSIC45 and SUS-
TAIN,46 often approximate pollutant treatment using first-
order decay models:47

(1)

where the concentration C of a pollutant is assumed to de-
crease exponentially following a decay coefficient k. While
this may be sufficient for approximating the settling dynam-
ics of sediment-bound pollutants, it does not capture the nu-
anced and complex transformation of dissolved compounds.
This often leads to treating the hydraulic retention time
(HRT) as the main proxy for water quality.

To that end, a number of approaches have been developed
to extend first-order decay models to account for variations
in background concentration,48 temperature,47 loading
rates49 or mixing conditions.50,51 A number of process
models have also been developed, applying knowledge from
treatment plant operations to stormwater.52 Langergraber
et al.53,54 used finite element analysis to model pollutant
transformations in subsurface flow wetlands. While these
more comprehensive water quality models are highly promis-
ing, their ability to simulate system-level treatment remains
to be explored.

Given the need to develop a better understanding of the
system-level transport and treatment of stormwater, there is a
need to couple existing hydraulic and water quality models.

3 Simulating controlled systems

The real-time operation of gates and valves introduces dy-
namics that impact hydraulics and water quality. To that
end, the biggest limitation of existing models is their ability
to simulate the system-wide impacts of real-time control.
This includes the ability to dynamically route flows based on
a variety of desired control actions, as well as the capacity to
simulate a variety of pollutant buildup, washoff, and non-
steady state treatment dynamics. While models such as
SWMM do have some rudimentary control capabilities, the
built-in control logic is limited to site-level control (e.g.
maintaining levels or flow in a pond).39 Advanced features,
such as system-level control, optimization, or the ability to
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control around external factors (such as weather forecasts),
are not yet implemented.55

While it would be possible to extend an existing model to
capture all these functionalities, the effort would be signifi-
cant. To that end, we contend that a coupled modeling ap-
proach56 will be the most flexible way to accomplish this. By
coupling models, rather than translating their features into
one large model, it becomes possible to construct a modeling
chain whose complexity varies based on the scientific or
management question that needs to be answered. More im-
portantly, if individual models undergo updates by their re-
spective domain experts, these new features would become
available to the coupled model as well without much imple-
mentation overhead.

In our coupled modeling approach (Fig. 2), each element
in the broader stormwater system can be represented as a
storage node, which receives inflows q1, q2,…, qn from up-
stream nodes, each of which has a corresponding concentra-
tion c1, c2,…, cn for a pollutant of interest. The node has an
outflow qout which, unlike in static hydraulic infrastructure,
is governed by a real-time control action u. A treatment po-
tential k governs the removal or transformation of the pollut-
ant based on a number of hydraulic and water quality states.

Given that control actions change the hydraulic behavior,
which in turn affects the treatment of the pollutants, it be-
comes necessary to implement a modeling cycle that couples
these processes in an interconnected, step-wise fashion. In
our implementation, the hydraulic simulation can be carried
out by any number of hydraulic models, ranging from simple
hydraulic routing schemes to more complex models such as
SWMM or MUSIC. Outputs from the hydraulic model are fed
to the water quality model, which, depending on the pollut-
ant of interest, can range from simple first-order process-
based methods to more complex finite-element models. Fi-
nally, the control module processes the outputs from the hy-
draulic and water quality models. Based on the objective,
which can depend on the states of multiple elements in the
overall system, it sets the discharge rate qout by closing or
opening the outlet. The benefits of the coupled approach re-
late to its flexibility since individual elements can be
connected together to represent highly complex stormwater
networks.

4 Simulated studies

To illustrate the potential benefits that can be achieved
through real-time stormwater control, we applied the pro-
posed simulation framework to two simulated case studies,
which were inspired by our current research efforts in the
midwestern United States. Multiple sites are currently being
retrofitted for control and will be compared to these simula-
tions in the coming years. The analysis was targeted on ni-
trate removal since most of the existing literature focuses on
hydraulic control or sediment-bound pollutants.

1. Local scale: the first study investigated the impacts of
real-time control on nitrate removal in a single stormwater
pond.

2. System scale: the second study evaluated how nitrate re-
moval can be coordinated between a system of controlled
stormwater elements.

4.1 Model implementation

Given the scope of the use cases, a simple flow balance mod-
ule was sufficient to simulate the hydraulic behavior of each
element. The change in water volume was modeled as the dif-
ference between inflows and outflows, which could be used
to calculate the water height h in each element based on its
area A. Outflows from each element were proportional to the
instantaneous pressure head, unless the element was con-
trolled. Such controlled elements were assumed to be
equipped with an outlet structure (i.e. butterfly or gate valve)
that can be used to regulate outflows such that:

(2)

Inflow into upstream elements was based on a hydrograph
that was directly measured at one of our study sites in Ann
Arbor, Michigan (Fig. 3). For the purpose of this study, this
hydrograph can be considered as a synthetic, but realistic, in-
put into the simulation. Overflows were simulated in the case
that the storage volume was exceeded. For simplicity, infiltra-
tion was assumed to be negligible in the study sites.

A water quality model was developed to simulate nitrogen
removal in each stormwater element. While nitrogen removal
processes are complex, we can simplify their function for this
example by assuming that the removal of nitrogen in
stormwater ponds and wetlands occurs through two primary
pathways: nitrification (conversion of ammonia to nitrate)
and de-nitrification (conversion of nitrate to nitrogen
gas).47,57 Nitrification is an aerobic process (oxygen acts an
electron acceptor), while denitrification is anoxic (nitrate acts
as an electron acceptor). While denitrification requires suffi-
cient biomass, it is often not limited by this requirement
since plants, grass and other sources of carbon are readily
present in stormwater ponds and wetlands.58 As such, oxygen
availability becomes a critical factor in nitrogen removal. This
can readily be tuned through hydraulic control since reten-
tion can be used to create anaerobic conditions.

Fig. 2 Each element in the broader stormwater system can be
modeled in a step-wise fashion that simulates hydraulic, water quality
and control dynamics.
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We constrained our case studies by focusing only on de-
nitrification, assuming that the majority of nitrogen entering
our system was in the form of nitrate. While ammonia is

present in some stormwater systems, prior measurement of
our study sites, as well as other literature studies,47 indi-
cated a nitrate-dominated runoff. Future studies will inves-
tigate the more complex dual-pathway conversion. A syn-
thetic time series for nitrate inflow concentrations was
generated to simulate loads to upstream elements. This was
achieved by assuming a rough correlation between flow
and nitrate (2 mg L−1 per m3 s−1), which was based on prior
measurements.29

The water treatment for each element was simulated using
a continuously stirred tank reactor (CSTR) representation,
which is commonly used to simulate similar processes in
wastewater treatment plants.59 Given the dynamic flow condi-
tions that result from real-time control, a closed-form solu-
tion that is based on hydraulic residence time does not ade-
quately capture the change in concentration of the pollutant.
As such, it becomes necessary to expand it into a complete
CSTR mass-balance relation60–62 to model the concentration
C of the dissolved pollutant:

(3)

At each time step, the CSTR module communicates with
the hydraulic module to update the hydraulic states

. The transformation rate k is computed at

each time step based on the hydraulic conditions of the
stormwater element. Specifically, denitrification can begin
once the oxygen concentration at the soil–water interface
drops below a minimum threshold (following a first-order de-
cay assumption). Once this occurs, a constant removal rate k
is activated. After the element drains, soil is exposed to the
air and must be submerged before denitrification can begin
again. As such, the model assumes that cumulative denitrifi-
cation is maximized when the water is in contact with the
most anaerobic soil area.

All simulations were implemented in MATLAB Simulink63

using a fixed time step solver (ode8 Dormand-Prince64) at 5
minute intervals. The step-wise coupled modeling approach
was implemented by representing each module (hydraulic,
water quality, and control) as an individual Simulink object
(Fig. 4). All of the source code, inputs and implementation
details are attached to this paper as ESI.†

4.2 Case study 1: local control

The first case study is motivated by the objective of control-
ling a single stormwater basin, which was originally designed
for flood remediation as a detention pond (flow-through).
The model parameters and physical attributes are provided
in the appendix of this paper. In its original configuration,
the pond merely serves to attenuate peak flows, with little
emphasis on water quality. By equipping this pond with a

Fig. 3 Impact of real-time control on hydraulic behavior and nitrate
treatment, showing inflow concentrations (top panel), pond water
height and outflows (second panel), nitrate concentrations inside the
pond (third panel), and cumulative nitrate loads exiting the pond (bot-
tom panel).
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control valve, its original functionality can remain unaffected
during large storms by simply keeping the valve open. Major
water quality benefits can arise, however, by controlling this
pond during smaller and more frequent events.

When enabled, the control algorithm keeps the valve
closed and only opens it if the water height exceeds 1.0 m to
prevent the pond from overflowing. As a further constraint,
when the height exceeds 1.0 m, the valve is modulated to
ensure that outflows do not exceed 2 m3 s−1, which is the
threshold at which downstream sediments are assumed to
be re-suspended. This additional condition ensures that the
controller behaves realistically, as the real-world operation
would likely have a bound on the outflows to prevent
downstream erosion. Two variations of the control algo-
rithm are also evaluated. The first strategy completely
drains the pond before a rain event, thus maximizing cap-
tured volumes. Based on the magnitude of the rain event
(assumed to be known through a weather forecast), the sec-
ond strategy only partially drains the pond, maximizing the
anaerobic conditions at the soil–water interface and thus
speeding up denitrification of the inflows. In this case
study, the height of the partially drained configuration was
set to 0.15 m, assuming that this height would be suffi-
cient to maintain the saturated conditions and prevent the
diffusion of oxygen into the soil.57

Compared to the uncontrolled scenario, which only atten-
uated the peak flow, both controlled scenarios retained a wa-
ter height of 1.0 m after the storm (Fig. 3). Since the pond
can be drained at a later time, this volume of water was effec-
tively removed from downstream infrastructure during the
storm event. In static stormwater systems, volume reduction
strategies are typically only assumed to be possible through
upstream infiltration and capture. As such, control may effec-
tively serve as a volume reduction strategy by shifting flows
outside of the storm window. Furthermore, outflows for the
controlled scenarios resembled a “step”, which kept flows be-
low a predetermined erosion threshold. This reduces down-
stream sediment loads, compared to the uncontrolled sce-
nario, whose outflows spent over 50% of the time exceeding
the 2 m3 s−1 erosion threshold.

Nitrate inside the pond and the effluent revealed distinct
dynamics between each control configuration. In the
uncontrolled scenario, very limited treatment occurred due to
short hydraulic retention time. The effluent concentrations
peaked before dropping to zero since the pond was drained
completely following the storm. The controlled scenarios did
not see this drop-off in internal nitrate because the flows
were retained for treatment. The partially drained scenario
showed lower nitrate concentrations at the beginning of the
storm due to higher anaerobic soil area and denitrification
potential.

While internal concentrations are an indicator of treat-
ment dynamics inside the pond, perhaps the best measure of
treatment capacity is given by the cumulative nitrate load
exiting the pond (bottom panel, Fig. 3). The uncontrolled sce-
nario exhibited the largest cumulative nitrate loads since the
runoff effectively just flowed through the pond with limited
treatment. The controlled pond showed a nearly 45% mass
reduction (from 8.6 kg to 4.7 kg) in nitrate due to increased
volume capture, HRT and denitrification. The partially
drained control strategy did indicate an improved load reduc-
tion compared to the fully drained control strategy (14% im-
provement). This suggests that, rather than simply draining
the pond before a storm event, improved load reductions
may be achieved through more complex control approaches.
More complex control comes at the cost of uncertainty, how-
ever. The partially drained controller assumed prior knowl-
edge about inflows to decide how much water to drain before
a storm. If these decisions are made around weather fore-
casts, the uncertainty embedded in the inputs may cause ad-
verse impacts, such as overflows. The anticipated benefits of
any control strategy should thus always be weighted against
the uncertainty of any inputs.

4.3 Case study 2: system-level control

The second case study evaluated how control strategies may
change when a system of multiple stormwater assets is con-
trolled. A system of four elements was considered, consisting
of three parallel ponds draining into a constructed wetland
(Fig. 5). Two of the upstream ponds were controlled while the
treatment wetland and the other pond remained
uncontrolled. The objective was to control the upstream
ponds to boost the nitrate treatment and reduce the effluent
concentrations at the outlet of the wetland. The configuration
was based on a real-world site currently being retrofitted for
control in southeastern Michigan.

Due to their large biomass area, wetlands have a higher
nitrate treatment capacity than ponds.65 As such, the con-
trol objective was to keep the downstream wetland “active”,
by maximizing its water height and thus the biomass treat-
ment area. While a prolonged inundation may damage the
emergent vegetation in the wetland, the proposed control
algorithm maximizes the treatment area of the wetland only
during the duration of the storm event, which should im-
prove the treatment while only briefly inundating the

Fig. 4 MATLAB Simulink implementation of the first case study. The
overall model functions in a step-wise fashion and couples stand-
alone hydraulic, water quality, and control models.
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wetland. In the uncontrolled scenario, the flows from the
upstream ponds actually added up causing the wetland
to overflow (Fig. 6, fourth column), which also impaired
treatment.

The controlled scenario (see Appendix for implementation
details) balanced the outflows from the two ponds to ensure
that the wetland remained filled (2 m – just below its over-
flow height) as long as the uncontrolled third pond was
discharging. Once the third pond was entirely drained, the
upstream ponds retained any additional inflows, as long as it
would not cause them to overflow. This strategy eliminated
downstream overflows while simultaneously increasing the
wetland's anaerobic treatment area. As such, flows from the
third pond were exposed to a higher degree of denitrification
compared to those in the uncontrolled case. Overall, the con-
trolled system achieved a 46.48% (from 17.9 kg to 9.6 kg) re-
duction in cumulative nitrate loads. While some of this over-
all reduction was driven by the fact that the two controlled
ponds remained filled after the storm, thus retaining some
nitrate mass upstream, two major benefits arose compared to
the uncontrolled scenario. Firstly, the wetland effluent con-
centrations were reduced over time, showing a 15.25% reduc-
tion in concentration. Secondly, the case study showed that a
subset of upstream elements may be controlled to reduce
downstream hydraulic loads, which, similar to the first case
study, has the potential to reduce erosion.

A natural extension of this control strategy would be the
direct control of the wetland. In many real-world situations,
however, not all elements of the system will be controllable.
In these instances, system-level benefits may still be achieved
via control of other elements. The purpose of this case study
was to illustrate one possible example focused on system-
level nutrient control. While simple, this control strategy was
nonetheless effective at improving the hydraulic and water
quality behavior of the overall system. More complex control
strategies will be evaluated in the future, especially in the

context of larger and more heterogeneous stormwater
systems.

5 Discussion

Current state-of-the-art stormwater solutions are still primar-
ily focused on static (non-controlled) solutions. As such, our
analysis compared real-time control to static solutions, which
were designed in accordance to modern engineering prac-
tices. Sensor-driven, real-time control of stormwater presents
an exciting new paradigm and research area. It is presently
unclear, however, how results generated by existing research,
as well as the case studies presented in this paper, can be
scaled to large watersheds. Many existing studies focus solely
on the control of individual elements and, specifically, on
sediment reduction or flood remediation. While the case
studies in this paper took a step toward simulating the re-
moval of more complex dissolved pollutants in a multi-
element system, it is important to note that the control logic
was uniquely tailored to one specific storm and study area.
The efficacy of the controls in our case studies was reliant on
the ability to hold water after a storm to allow for extended
treatment. This strategy may be impacted by limits on hy-
draulic retention time. Modifying the water levels and resi-
dence times may introduce issues related to aesthetics, plant
survival and mosquito breeding.66 Thus, the potential bene-
fits to water flow and quality must be studied as part of a
multi-objective optimization problem. Much of the real world
is underpinned by significant uncertainty, especially related
to weather forecasts. Since these forecasts determine when
and how much water needs to be released, the stochastic na-
ture of weather must be taken into consideration when con-
trolling such systems.

Control strategies may also change entirely if the removal
of different pollutants is required. A simple example can be
given by watersheds in which runoff is dominated by ammo-
nia rather than nitrate, thus requiring stages of both nitrifica-
tion and denitrification. The intricacy of control strategies
will likely increase with the number of objectives67 and the
complexity of runoff dynamics. This introduces the exciting
paradigm of controlling the overall system to create treat-
ment chains in which individual elements are tuned to
achieve specific objectives. By tuning the hydraulic behavior
of each element, there will be an unprecedented opportunity
to begin applying process-based knowledge from wastewater
treatment to distributed stormwater modeling. The modeling
of such complete control approaches will be made easier by
the simulation approach proposed in Fig. 2, which will allow
for coupling of knowledge spanning hydrology, hydraulics,
and water quality.

6 Knowledge gaps

While research is needed to improve our fundamental under-
standing and modeling of system-level stormwater, two major
knowledge gaps become evident when we view stormwater

Fig. 5 System-level control case study: three ponds, two of which are
controlled, draining into a treatment wetland.
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control in a system-theoretical framework. This can be ac-
complished by visualizing it as a feedback loop (Fig. 7), a tech-
nique common in the control communities and dynamical
systems theory.68 This loop estimates the difference between
a desired watershed outcome (downstream nitrate concentra-
tions, for example) and the actual watershed outcome and
feeds it into the control logic to drive the system toward the
desired outcome. The physical requirements of this feedback
loop, which include sensors, controllers and the physical in-
frastructure, already exist or have matured to the point at
which they do not present major research challenges. Rather,
our biggest knowledge gaps span the virtual components of
the feedback loop and include the (1) assimilation of noisy,
sparse, and heterogeneous sensor data into real-time models

(state estimation), and (2) the automated synthesis of control
logic in response to these estimates.

6.1 Toward a new generation of real-time models

Unlike in static infrastructure systems, where adaptation
strategies take place on monthly or yearly time scales, real-
time control reduces adaptation to minutes or seconds.
Existing stormwater models have not been designed to inter-
face with real-time data. Rather, sensor data is often used
merely as a convenience to parameterize the model. It is not
uncommon for these predictions to drift away from real-
world conditions over the modeling horizon. Given the need
to base control actions on the best sources of information, a

Fig. 6 Impact of real-time control on hydraulics and nitrate treatment across a system of stormwater elements: inflow concentrations (top row),
pond water height and outflows (second row), nitrate concentrations inside each element (third row), and cumulative nitrate loads exiting the pond
(bottom row).
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new generation of data-driven and real-time models must be
developed. Rather than executing unchecked into the future,
they will “learn” from the data and update their states to re-
flect changing field conditions. Such models will need to be
self-calibrating, robust to uncertainty, and computationally
efficient to execute in the amount of time required to make
control decisions. This raises the question: how complex
does a system model need to be to enable an effective and ro-
bust control loop? While the answer to this question remains
to be investigated, many other control applications (aircraft
autopilots, for example) suggest that it is very likely that
stormwater control models will not need to be as complex as
the models currently used for simulation. This does not
mean that existing physically driven models or our proposed
simulation framework (Fig. 2) will not be needed. In fact,
existing simulation approaches will be critical in the plan-
ning and design of control systems, while real-time models
will be used for the actual control.

In our case studies, an assumption was made that control
actions were informed by known in situ conditions, such as
water flows, pond levels, and nitrate concentrations. This will
be far from true in many real-world control systems, where
sensors will be sparsely placed and noisy. New models will
thus have to be developed to make predictions at locations
that are uninstrumented and for parameters that are
unmeasured. By quantifying the uncertainty inherent in such
models, it will also be possible to develop sensor placement
algorithms to determine how many sensors are required and
where they should be placed to improve real-time model per-
formance. Many of the methods required for these tasks al-
ready exist in other communities (system identification, data
assimilation, machine learning, etc.), but their application to
stormwater systems remains to be investigated.

6.2 Control algorithms

While there is potential to apply more advanced control algo-
rithms to our case studies, the application of complex control
logic to stormwater presents an open area of research. It is

unclear which real-time control and optimization techniques
will be the most robust and suitable for distributed
stormwater systems. Most current studies, as well as the case
studies presented in this paper, have been built around sim-
ple rule-based control (e.g. drain a pond before a storm).
While such control approaches preserve intuition and incor-
porate operator expertise, they do not scale for systems of ar-
bitrary sizes. This impedes the ability to transfer lessons from
one watershed to another. The complexity of operational
rules will increase drastically with the size of watersheds or
extended control objectives. The logic associated with operat-
ing a network of distributed stormwater assets, consisting of
hundreds or thousands of controllers, will become over-
whelming unless formal mathematical methods are devel-
oped to abstract the physical stormwater dynamics into a
system-theoretical framework. These mathematical underpin-
nings will finally allow for performance or safety guarantees
to be provided. This, in turn, will enable new methods to de-
termine how many controllers are needed and where they
should be placed to ensure that desired watershed outcomes
are met.

7 Conclusions

The goal of this paper was to illustrate the need for a “smart”
stormwater systems theoretical framework. Before such sys-
tems become adopted, much work remains to be conducted
on simulating their performance, which can be accomplished
by coupling existing hydrologic, hydraulic and water quality
models. As demonstrated by our case studies, real-time con-
trol of stormwater has the potential to significantly improve
the performance of existing infrastructure, introducing new
alternatives to tightly manage nutrients, metals and other
pollutants in urban watersheds. Considering the current
funding mechanisms for stormwater, especially in the United
States, the cost of retrofitting will provide a more budget-
conscious alternative to new construction while achieving
similar or better water quality outcomes. Aside from techni-
cal or research gaps, which must be addressed before these

Fig. 7 The stormwater feedback control loop. A desired watershed outcome is compared, in real time, to an actual watershed state based on
sensor measurements. The control logic then adjusts the states of valves, gates and pumps to drive the system toward the desired state.
Disturbances, such as precipitation, may drive the system away from the desired outcome and must be controlled against when the feedback loop
repeats.
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systems become a reality, it will be imperative to encourage a
broad community of researchers, engineers, and cities to
adopt these technologies as part of their existing toolboxes.
To that end, our team has been spearheading the open-
storm.org portal, a collaborative and open-source initiative
aimed at sharing end-to-end blueprints and tutorials on soft-
ware, hardware and sensors required to instrument and con-
trol urban watersheds. Updates (photos, videos, results, etc.
open-storm.org will track and disseminate its future work.

8 Appendix

Parameterization of models used for the case studies. The
MATLAB Simulink models and data used for generating the
plots are available at https://github.com/kLabUM/control-sim-
es-wrt.

8.1 Case study 1: local control

• Area: 500 m2

• Max height: 1.5 m
• KNitrate = 42.048 per year
• KOxygen = 31.536 per year

8.2 Case study 2: system-level control (Fig. 8)

• Pond 1
- Area: 1000 m2

- Max height: 2.5 m
- KNitrate = 21.024 per year
- KOxygen = 525.60 per year

• Pond 2
- Area: 600 m2

- Max height: 2.5 m
- KNitrate = 21.024 per year
- KOxygen = 1051.2 per year

• Pond 3
- Area: 1000 m2

- Max height: 2.5 m
- KNitrate = 15.768 per year
- KOxygen = 1051.2 per year

• Wetland
- Area: 1000 m2

- Max height: 2.4 m
- Weir height: 1.5 m
- KNitrate = 25.228 per year
- KOxygen = 1051.2 per year

Acknowledgements

The authors acknowledge the financial support of the Great
Lakes Protection Fund and the University of Michigan.

References

1 D. Frosch and C. McWhirter, Houstons Rapid Growth, Heavy
Rains, Heightend Flood Risk, 2016.

2 A. M. Michalak, E. J. Anderson, D. Beletsky, S. Boland, N. S.
Bosch, T. B. Bridgeman, J. D. Chaffin, K. Cho, R. Confesor, I.
Daloglu, J. V. DePinto, M. A. Evans, G. L. Fahnenstiel, L. He,
J. C. Ho, L. Jenkins, T. H. Johengen, K. C. Kuo, E. LaPorte, X.
Liu, M. R. McWilliams, M. R. Moore, D. J. Posselt, R. P.
Richards, D. Scavia, A. L. Steiner, E. Verhamme, D. M.
Wright and M. A. Zagorski, Proc. Natl. Acad. Sci. U. S. A.,
2013, 110, 6448–6452.

3 F. Powledge, BioScience, 2005, 55, 1032–1038.
4 D. F. Boesch, R. B. Brinsfield and R. E. Magnien, J. Environ.

Qual., 2001, 30, 303–320.
5 Geosyntec, Stormwater Capture Master Plan Interim Report,

Geosyntec Technical Report December, 2014.
6 N. Garrison, Stormwater Capture Potential in Urban and

Suburban California, Natural resources defense council
technical report, 2014.

7 P. Hamel, E. Daly and T. D. Fletcher, J. Hydrol., 2013, 485,
201–211.

8 M. J. Burns, T. D. Fletcher, C. J. Walsh, A. R. Ladson and
B. E. Hatt, Landsc. Urban Plan., 2012, 105, 230–240.

9 D. W. Stanley, Water Environ. Res., 1996, 68, 1076–1083.
10 J. N. Carleton, T. J. Grizzard, A. N. Godrej, H. E. Post, L.

Lampe and P. P. Kenel, Water Environ. Res., 2000, 72,
295–304.

Fig. 8 Rule-based algorithm used for controlling the system in the
second case study.

Environmental Science: Water Research & Technology Paper

Pu
bl

is
he

d 
on

 1
3 

O
ct

ob
er

 2
01

6.
 D

ow
nl

oa
de

d 
on

 3
/2

2/
20

19
 1

0:
34

:0
4 

PM
. 

View Article Online

http://open-storm.org
http://open-storm.org
http://open-storm.org
https://github.com/kLabUM/control-sim-es-wrt
https://github.com/kLabUM/control-sim-es-wrt
http://dx.doi.org/10.1039/c6ew00211k


76 | Environ. Sci.: Water Res. Technol., 2017, 3, 66–77 This journal is © The Royal Society of Chemistry 2017

11 M. A. Benedict, T. Edward and J. D. Mcmahon, in Green
Infrastructure: A Strategic Approach to Land Conservation, The
Conservation Fund, 2006, ch. 1, p. 5.

12 B. Urbonas, Water Sci. Technol., 1994, 29, 347–353.
13 A. R. Cizek and W. F. Hunt, Ecol. Eng., 2013, 57, 40–45.
14 G. Petrucci, E. Rioust, J.-F. Deroubaix and B. Tassin,

J. Hydrol., 2013, 485, 188–200.
15 J. Sage, E. Berthier and M. C. Gromaire, Environ. Manage.,

2015, 56, 66–80.
16 G. Petrucci, J.-F. Deroubaix and B. Tassin, CWRS 2014:

Evolving Water Resources Systems: Understanding, Predicting
and Managing Water-Society Interactions, 2014, vol. 364, pp.
1–7.

17 C. H. Emerson, M. Asce, C. Welty and R. G. Traver, J. Hydrol.
Eng., 2005, 10, 237–242.

18 S.-K. Ciou, J.-T. Kuo, P.-H. Hsieh and G.-H. Yu, Optimization
Model for BMP Placement in a Reservoir Watershed, J. Irrig.
Drain. Eng., 2012, 138(8), 736–747.

19 X.-Y. J. Zhen, S. L. Yu and J.-Y. Lin, J. Water Resour. Plan.
Manage., 2004, 130, 339–347.

20 I. Chaubey, C. Haan, S. Grunwald and J. Salisbury, J. Hydrol.,
1999, 220, 48–61.

21 Y. Ouyang, P. Nkedi-Kizza, Q. Wu, D. Shinde and C. Huang,
Water Res., 2006, 40, 3800–3810.

22 A. Goonetilleke, E. Thomas, S. Ginn and D. Gilbert,
J. Environ. Manage., 2005, 74, 31–42.

23 Department of Environmental Protection, Pennsylvania
Stormwater Best Management Practices Manual, Bureau of
Watershed Management, 2006.

24 C. Jacopin, E. Lucas, M. Desbordes and P. Bourgogne, Water
Sci. Technol., 2001, 44, 277–285.

25 J. R. Middleton and M. E. Barrett, Water Environ. Res.,
2008, 80, 172–178.

26 D. Muschalla, B. Vallet, F. Anctil, P. Lessard, G. Pelletier and
P. A. Vanrolleghem, J. Hydrol., 2014, 511, 82–91.

27 E. Gaborit, D. Muschalla, B. Vallet, P. A. Vanrolleghem and
F. Anctil, Urban Water J., 2013, 10, 230–246.

28 E. Gaborit, F. Anctil, G. Pelletier and P. A. Vanrolleghem,
Urban Water J., 2015, 1–11.

29 B. Kerkez, C. Gruden, M. J. Lewis, L. Montestruque, M.
Quigley, B. P. Wong, A. Bedig, R. Kertesz, T. Braun, O.
Cadwalader, A. Poresky and C. Pak, Environ. Sci. Technol.,
2016, 50, 7267–7273.

30 The European Parliament and the Council of European
Union, Official Journal of the European Communities, 2000,
01–73.

31 L. Benedetti, P. Prat, I. Nopens, M. Poch, C. Turon, B. De
Baets and J. Comas, Water Sci. Technol., 2009, 60, 2035.

32 K. Seggelke, R. Löwe, T. Beeneken and L. Fuchs,
Implementation of an integrated real-time control system of
sewer system and waste water treatment plant in the city of
Wilhelmshaven, Urban Water J., 2013, 10, 330–341.

33 D. Fiorelli, G. Schutz, K. Klepiszewski, M. Regneri and S.
Seiffert, Optimised real time operation of a sewer network
using a multi-goal objective function, Urban Water J.,
2013, 10, 342–353.

34 A. L. Mollerup, P. S. Mikkelsen, D. Thornberg and G. Sin,
Controlling sewer systems – a critical review based on
systems in three EU cities, Urban Water J., 2016, DOI:
10.1080/1573062X.2016.1148183.

35 Y. Sheffi, Urban transportation networks, Prentice Hall, 1984.
36 K. J. Aström, R. M. Murray and R. Murray, Feedback Systems:

An Introduction for Scientists and Engineers, Princeton
University Press, 2006.

37 G. W. Brunner and J. Gorbrecht, A Muskingum-Cunge
Channel Flow Routing Method for Drainage Networks, ASCE
Journal of Hydraulics, 1991, 117(5), 629–642.

38 D. A. Chin, A. Mazumdar and K. Roy, Water-resources
engineering, Prentice Hall Englewood Cliffs, 12th edn, 2000.

39 L. A. Rossman, Storm Water Management Model User's Manual
Version 5.1, US Environmental Protection Agency, 2010.

40 G. Brunner and CEIWR-HEC, HEC -RAS River Analysis System
User Manual, US Army Corps of Engineers, Institute for
Water Resources, 5th edn, 2016.

41 A. Rizzo, G. Langergraber, A. Galvão, F. Boano, R. Revelli
and L. Ridolfi, Ecol. Eng., 2014, 68, 209–213.

42 T. Pálfy and G. Langergraber, Ecol. Eng., 2014, 68, 105–115.
43 D. Giraldi, M. de Michieli Vitturi and R. Iannelli, Environ.

Model. Softw., 2010, 25, 633–640.
44 C. B. S. Dotto, M. Kleidorfer, A. Deletic, T. D. Fletcher, D. T.

McCarthy and W. Rauch, Water Sci. Technol., 2010, 62, 837–843.
45 T. H. F. Wong, T. D. Fletcher, H. P. Duncan, J. R. Coleman

and G. A. Jenkins, Global Solutions for Urban Drainage, 2002,
pp. 1–14.

46 F.-H. Lai, T. Dai, J. Zhen, J. Riverson, K. Alvi and L.
Shoemaker, Proceedings of the Water Environment Federation,
2007, vol. 5, pp. 946–968.

47 R. H. Kadlec and S. Wallace, Treatment wetlands, CRC press,
2008.

48 A. H. L. Shepherd, G. Tchobanoglous and M. E. Grismer,
Water Environ. Res., 2001, 73, 597–606.

49 C. Mitchell and D. McNevin,Water Res., 2001, 35, 1295–1303.
50 J. Persson and H. B. Wittgren, Ecol. Eng., 2003, 21, 259–269.
51 T. H. F. Wong, T. D. Fletcher, H. P. Duncan and G. A.

Jenkins, Ecol. Eng., 2006, 27, 58–70.
52 G. Langergraber, Vadose Zone J., 2008, 7, 830–842.
53 G. Langergraber, D. P. L. Rousseau, J. García and J. Mena,

Water Sci. Technol., 2009, 59, 1687–1697.
54 G. Langergraber and J. Šimůnek, Vadose Zone J., 2005, 4,

924–938.
55 G. Ria, J. Barreiro-Gomez, A. Ramirez-Jaime, N. Quijano and

C. Ocampo-Martinez, Environ. Model. Softw., 2016, 83,
143–154.

56 J. L. Goodall, B. F. Robinson and A. M. Castronova, Environ.
Model. Softw., 2011, 26, 573–582.

57 K. R. Reddy, W. H. Patrick and C. W. Lindau, Limnol.
Oceanogr., 1989, 34, 1004–1013.

58 J. R. White and K. R. Reddy, The Wetlands Handbook, 2009,
pp. 213–227.

59 M. Henze, Activated sludge models ASM1, ASM2, ASM2d and
ASM3, IWA Publishing, 2000.

60 H. Alvord and R. Kadlec, Ecol. Eng., 1996, 90, 97–107.

Environmental Science: Water Research & TechnologyPaper

Pu
bl

is
he

d 
on

 1
3 

O
ct

ob
er

 2
01

6.
 D

ow
nl

oa
de

d 
on

 3
/2

2/
20

19
 1

0:
34

:0
4 

PM
. 

View Article Online

http://dx.doi.org/10.1039/c6ew00211k


Environ. Sci.: Water Res. Technol., 2017, 3, 66–77 | 77This journal is © The Royal Society of Chemistry 2017

61 R. H. Kadlec, Transformations of Nutrients in Natural and
Constructed Wetlands, 2001, pp. 365–391.

62 R. K. Munson, S. B. Roy, S. A. Gherini, A. L. MacNeill,
R. J. M. Hudson and V. L. Blette, Water, Air, Soil Pollut.,
2002, 134, 255–272.

63 The MathWorks Inc., MATLAB.
64 J. Dormand and P. Prince, J. Comput. Appl. Math., 1980, 6,

19–26.

65 L. Scholes, D. M. Revitt and J. B. Ellis, J. Environ. Manage.,
2008, 88, 467–478.

66 R. L. Knight, W. E. Walton, G. F. O'Meara, W. K. Reisen and
R. Wass, Ecol. Eng., 2003, 21, 211–232.

67 E. D. Tillinghast, W. F. Hunt, G. D. Jennings and P.
D'Arconte, J. Hydrol. Eng., 2012, 17, 1381–1388.

68 K. Ogata, Modern Control Engineering, Prentice Hall, 5th edn,
2009, p. 201.

Environmental Science: Water Research & Technology Paper

Pu
bl

is
he

d 
on

 1
3 

O
ct

ob
er

 2
01

6.
 D

ow
nl

oa
de

d 
on

 3
/2

2/
20

19
 1

0:
34

:0
4 

PM
. 

View Article Online

http://dx.doi.org/10.1039/c6ew00211k

	crossmark: 


