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a b s t r a c t 

A new generation of smart stormwater systems promises to reduce the need for new construction by enhancing 

the performance of the existing infrastructure through real-time control. Smart stormwater systems dynamically 

adapt their response to individual storms by controlling distributed assets, such as valves, gates, and pumps. This 

paper introduces a real-time control approach based on Reinforcement Learning (RL), which has emerged as a 

state-of-the-art methodology for autonomous control in the artificial intelligence community. Using a Deep Neu- 

ral Network, a RL-based controller learns a control strategy by interacting with the system it controls - effectively 

trying various control strategies until converging on those that achieve a desired objective. This paper formulates 

and implements a RL algorithm for the real-time control of urban stormwater systems. This algorithm trains a 

RL agent to control valves in a distributed stormwater system across thousands of simulated storm scenarios, 

seeking to achieve water level and flow set-points in the system. The algorithm is first evaluated for the control 

of an individual stormwater basin, after which it is adapted to the control of multiple basins in a larger watershed 

(4 km 

2 ). The results indicate that RL can very effectively control individual sites. Performance is highly sensitive 

to the reward formulation of the RL agent. Generally, more explicit guidance led to better control performance, 

and more rapid and stable convergence of the learning process. While the control of multiple distributed sites 

also shows promise in reducing flooding and peak flows, the complexity of controlling larger systems comes with 

a number of caveats. The RL controller’s performance is very sensitive to the formulation of the Deep Neural 

Network and requires a significant amount of computational resource to achieve a reasonable performance en- 

hancement. Overall, the controlled system significantly outperforms the uncontrolled system, especially across 

storms of high intensity and duration. A frank discussion is provided, which should allow the benefits and draw- 

backs of RL to be considered when implementing it for the real-time control of stormwater systems. An open 

source implementation of the full simulation environment and control algorithms is also provided. 
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. Introduction 

Urban stormwater and sewer systems are being stressed beyond their

ntended design. The resulting symptoms manifest themselves in fre-

uent flash floods ( Laris Karklis and Muyskens, 2017 ) and poor receiv-

ng water quality ( Watson et al., 2016 ). Presently, the primary solution

o these challenges is the construction of new infrastructure, such as

igger pipes, basins, wetlands, and other distributed storage assets. Re-

esigning and rebuilding the existing stormwater infrastructure to keep

n pace with the evolving inputs is cost prohibitive for most communities

 Kerkez et al., 2016 ). Furthermore, infrastructure is often upgraded on

 site-by-site basis and rarely optimized for system-scale performance.

resent approaches rely heavily on the assumption that these individ-

al upgrades will add up to cumulative benefits, while the contrary has
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ctually been illustrated by studies evaluating system-level outcomes

 Emerson et al., 2005 ). The changing and highly variable nature of

eather and urban environments demands stormwater solutions that

an more rapidly adapt to changing community needs. 

Instead of relying on new construction, a new generation of

mart stormwater systems promises to dynamically re-purpose exist-

ng stormwater systems. These systems will use streaming sensor data

o infer real-time state of a watershed and respond via real-time con-

rol of distributed control assets, such as valves, gates, and pumps

 Kerkez et al., 2016 ). By achieving system-level coordination between

any distributed control points, the size of infrastructure needed to

educe flooding and improve water quality will become smaller. This

resents a non-trivial control challenge, however, as any automated de-

isions must be carried with regard to public safety and must account

https://doi.org/10.1016/j.advwatres.2020.103600
http://www.ScienceDirect.com
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or the physical complexity inherent to urban watersheds ( Mullapudi

t al., 2017; Schütze et al., 2004 ). 

In this paper, we investigate Deep Reinforcement Learning for the real-

ime control of stormwater systems. This approach builds on very recent

dvances in the artificial intelligence community, which have primarily

ocused on the control of complex autonomous systems, such as robots

nd autonomous vehicles ( Mnih et al., 2015; Lillicrap et al., 2015 ). In

his novel formulation, our algorithm will learn the best real-time control

trategy for a distributed stormwater system by efficiently quantifying

he space of all possible control actions. In simple terms, the algorithm

ttempts various control actions until discovering those that have the

esired outcomes. While such an approach has shown promise across

any other domains, it is presently unclear how it will perform and

cale when used for the real-time control of water systems, specifically

rban drainage networks. 

The fundamental contribution of this paper is a formulation of a

ontrol algorithm for urban drainage systems based on Reinforcement

earning. Given the risk to property and public safety, it is imprudent

o hand over the control of a real-world watershed to a computer that

earns by mistake. As such, a secondary contribution is the evaluation

f the Reinforcement Learning algorithm across a series of simulations,

hich span various drainage system complexities and storms. The re-

ults will illustrate the benefits, limitations, and requirement of Rein-

orcement Learning when applied to urban stormwater systems. To our

nowledge, this is the first formulation of Deep Reinforcement Learning

or the control of stormwater systems. The results of this study stand to

upport a foundation for future studies on the role of Artificial Intelli-

ence in the control of urban water systems. 

.1. Real time control of urban drainage systems 

Since the European Union’s Directive on water policy ( The European

arliament and the council of European Union, 2000 ), there has been a

ignificant push towards the adoption of real-time control for improv-

ng wastewater and sewer systems ( Schütze et al., 2004; Mollerup et al.,

016 ). Many of these control approaches fall broadly under the cate-

ories of real-time control (RTC, control decisions made solely on the

eal-time state of the system), and Model Predictive Control (MPC, de-

isions that account for predicted future conditions). During the past

ecade, MPC has emerged as a state-of-the-art methodology for de-

eloping control strategies and analyzing their potential for control-

ing urban drainage and sewer networks in simulated setting. MPC has

een used to regulate dissolved oxygen in the flows to aquatic bod-

es ( Mahmoodian et al., 2017 ), control inflows to wastewater treat-

ent plants ( Pleau et al., 2005 ), and enhance the system-level perfor-

ance and coordination of sewer network assets ( Mollerup et al., 2016;

eneses et al., 2018 ). These and many other simulation based studies

 Wong and Kerkez, 2018 ) have illustrated the benefits of control, the

iggest of which is the ability to cost-effectively re-purpose existing as-

ets in real-time without the need to build more passive infrastructure. 

The performance of MPC depends on the extent to which the un-

erlying process can be approximated using a linear model ( Van Over-

oop, 2006 ). A benefit of this linearity assumption is the ability to ana-

ytically evaluate the stability, robustness, and convergence properties

f the controller ( Ogata, 2011 ), which is valuable when providing safety

nd performance guarantees. Network dynamics of storm and sewer sys-

ems and transformations of the pollutants in runoff are known to be

eavily non-linear. This demands a number of approximations and a

igh level of expertise when applying Model Predictive Control. Fur-

hermore, real-world urban watersheds are prone to experiencing pipes

lockages, sensor breakdowns, valve failures, or other adverse condi-

ions. Adapting and re-formulating linear control models to such non-

inear conditions is difficult, but is being addressed by promising re-

earch ( Wong and Kerkez, 2018 ). The constraints of linear approxima-

ions and the need for adaptive control algorithms open the door to ex-
loring other control methodologies, such as the one presented in this

aper. 

. Reinforcement learning 

Across the Artificial Intelligence and Behavioral research commu-

ities, Reinforcement Learning (RL) has emerged as a state-of-the-art

ethodology for autonomous control and planning systems. Unlike in

lassical feedback control, where the controller carries out a pre-tuned

nd analytical control action, a RL controller (i.e. a RL agent) learns a

ontrol strategy by interacting with the system - effectively trying var-

ous control strategies until learning those that work well. Rather than

ust learning one particular control strategy, a RL agent continuously at-

empts to improve its control strategy by assimilating new information

nd evaluating new control strategies ( Sutton and Barto, 1998 ). RL can

e used in a model free context since the system’s dynamics are implic-

tly learned by evaluating various control actions. Leveraging the recent

dvancements in Deep Neural Networks and the computational power

fforded by the high performance clusters (HPCs), RL agents have been

ble to plan complex tasks, such as observing pixels to play video games

t a human level ( Mnih et al., 2015 ), defeating world champions in the

ame of GO ( Silver et al., 2017b ), achieving “superhuman ” performance

n chess ( Silver et al., 2017a ), controlling high speed robots ( Kober et al.,

013 ), and navigating autonomous vehicles ( Ng et al., 2006 ). Despite

he wide adoption of Deep Neural Network based Reinforcement Learn-

ng (Deep RL) in various disciplines of engineering, its adoption in civil

ngineering disciplines has been limited ( Abdulhai and Kattan, 2003;

hattacharya et al., 2003; Castelletti et al., 2010 ). Deep RL control has

et to be applied to the real-time control of urban drainage systems. 

Deep RL agents approximate underlying system dynamics implicitly,

ence not requiring a simplified or linearized control model ( Sutton and

arto, 1998 ). A Deep RL agent instantaneously identifies a control action

y observing the network dynamic, thus reducing delay in the decision

rocess ( Mnih et al., 2015; Silver et al., 2017a ). The explorative nature

f the Deep RL agents also enables the methodology to adapt its control

trategy to changing conditions of the system ( Sutton and Barto, 1998 ).

ence, Reinforcement Learning shows promise as a potential alterna-

ive or supplement to existing control methods for water systems. To

hat end, the goal of this paper is to formulate and evaluate of Rein-

orcement Learning for the real-time control of urban drainage systems.

he specific contributions of the paper are: 

1. The formulation and implementation of a reinforcement learning al-

gorithm for the real-time (non-predictive) control of urban stormwa-

ter systems. 

2. An evaluation of the control algorithm under a range of storm in-

puts and network complexities (single stormwater basins and an en-

tire network), as well as an equivalence analysis that compares the

approach to passive infrastructure solutions. 

3. A fully open-sourced implementation of the control algorithm to pro-

mote transparency and permit for the direct application of the meth-

ods to other systems, shared on open-storm.org. 

. Methods 

.1. Reinforcement learning for stormwater systems 

When formulated as a Reinforcement Learning (RL) problem, the

ontrol of stormwater systems can be fully described by an agent and

nvironment ( Fig. 1 ). The environment represents an urban stormwater

ystem and the agent represents the entity controlling the system. At

ny given time t , the agent takes a control action a t (e.g. opening a

alve or turning on a pump) by observing any number of states s t (e.g.

ater levels or flows) in the environment. Based on the outcomes of its

ction, the agent receives a reward r t from the environment. The reward

s formulated to reflect the specific control objectives. For example, an
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Fig. 1. During a storm event, a Reinforcement Learning controller observes the 

state (e.g. water levels, flows) of the stormwater network and coordinates the 

actions of the distributed control assets in real-time to achieve watershed-scale 

benefits. 

Table 1 

Summary of notation used in paper. 

Symbol Definition 

s t state observed by agent at time t 

a t action taken by agent at time t 

r t reward received by the agent at time t 

𝝅 policy of the agent 

v(s t ) value estimate for a given state s t 
q(s t , a t ) action value estimate for a given state action pair s t , a t 
q action value estimator 

q ∗ target estimator 

𝝐 rate of exploration 

𝜶 step size 

𝜸 discount factor 

h t basin’s water level at time t 

f t channel’s flow at time t 

H desired water height in basin 

𝑯 𝐦𝐚𝐱 height threshold for flooding 

F flow threshold for erosion 
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gent could receive positive reward for preventing flooding or a negative

eward for causing flooding. By quantifying these rewards in response

o various actions over time, the agent learns the control strategy that

ill achieve its desired objective ( Sutton and Barto, 1998 ). The agent’s

ontrol actions in any given state are governed by its policy 𝜋. Formally,

he policy is a mapping from a given state to the agent’s actions: 

∶ 𝑠 𝑡 ( ℝ 

𝑛 ) → 𝑎 𝑡 ( ℝ ) (1)

The primary objective of the RL control problem is to learn a policy

hat maximizes the total reward earned by the agent. Notation used in

his paper is summarized in Table 1 . 

While the reward r t at the end of each control action teaches the

gent the immediate desirability of taking a particular action for a given

tate, it does not necessarily covey any information about the long-term

esirability of that action. For many water systems, maximizing short-

erm rewards will not necessarily lead to the best long-term outcomes.

n agent controlling a watershed or stormwater system should have the
bility to take individual actions in the context of the entire storm du-

ation. For example, holding water in a detention basin may initially

rovide high rewards since it reduces downstream flooding, but may

ead to upstream flooding if a storm becomes too large. Instead of choos-

ng an action that maximizes the reward r t at time t , the agent seeks to

aximize the expected long-term reward described by state-value v or

ction-value q . 

 ( 𝑠 𝑡 ) = 𝔼 

[ ∞∑
𝑘 =0 

[
𝛾𝑘 𝑟 𝑡 + 𝑘 +1 

|||𝑠 𝑡 ]
] 

(2)

( 𝑠 𝑡 , 𝑎 𝑡 ) = 𝔼 

[ ∞∑
𝑘 =0 

[
𝛾𝑘 𝑟 𝑡 + 𝑘 +1 

|||𝑠 𝑡 , 𝑎 𝑡 ]
] 

(3)

The state-value provides an estimate of the reward received for an

nstantaneous action, as well as potential future rewards that may arise

fter state s t , discounted with a factor 𝛾 (0 ≤ 𝛾 ≤ 1). The action-value

rovides a similar estimate conditioned on taking an action a t in state

 t . The discount factor 𝛾 governs the temporal context of the reward.

or example, a 𝛾 of 0 forces the agent to maximize the instantaneous

eward, while a 𝛾 of 1 forces it to equally weigh all the rewards it might

eceive for present and future outcomes. 𝛾 is specific to the system be-

ng controlled and can vary based on the control objective ( Sutton and

arto, 1998 ). 

A RL agent can learn to control a system by learning the policy di-

ectly ( Sutton et al., 2000 ). Alternatively, the agent can learn the state-

alue or action-value estimates and follow a policy that guides it to-

ards the states with high estimates ( Sutton and Barto, 1998 ). Several

ethods based on dynamic programming ( Watkins and Dayan, 1992;

utton, 1991 ) and Monte Carlo sampling ( Sutton and Barto, 1998 ) have

een developed to learn the functions that estimate the policy and value

unctions. While these algorithms were computationally efficient and

rovided guarantees on the convergence, their application was limited

o simple systems whose state action space can be approximated using

ookup tables and linear functions ( Sutton and Barto, 1998; Mnih et al.,

013 ). 

Given the scale and the complexity of urban watersheds and

tormwater networks, a simple lookup table or a linear function can-

ot effectively approximate the policy or value functions for each state

he agent may encounter while controlling the system. As a simple ex-

mple, considering just ten valves in a stormwater system and assuming

hat each valve has ten possible control actions (closed, 10% open, 20%

pen,...) this gives 10 10 (10 billion) possible actions that can be taken

t any given state, making it computationally impossible to build an ex-

licit lookup table for all possible states. This, however, is where very

ecent advances in Deep Learning, become important. It has been shown

hat, for systems with large state-action spaces, such as stormwater sys-

ems, these functions can be approximated by a Deep Neural Network

 Sutton and Barto, 1998; Mnih et al., 2015 ). 

Deep Neural Networks are a class of feed-forward artificial neural

etworks with large layers of interconnected neurons. This Deeply lay-

red structure permits the network to approximate highly complex func-

ions ( Hornik et al., 1989 ), such as those needed for RL-based con-

rol. Each layer in the network generates its output by processing the

eighted outputs from the previous layer. This means that each layer’s

utput is more complex and abstract than its previous layer. Given the

mergence of cheap and powerful computational hardware over the past

ecade – in particular graphical processing units (GPUs) and high perfor-

ance clusters (HPCs) – Deep Neural Networks and their variants have

merged as the state of the art in the approximation of complex func-

ions in large state spaces ( LeCun et al., 2015a ). This makes them a good

andidate for approximating the complex dynamics across stormwater

ystems. For purposes of this paper, a brief mathematical summary of

eep Neural Networks is provided in SI section 1. 
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1 https://github.com/kLabUM/rl- storm- control . 
.2. Deep q learning 

Deep reinforcement learning agents (Deep RL) use Deep Neural Net-

orks as approximators for value or policy functions to control complex

nvironments. In their relatively recent and seminal Deep Q Network

DQN) paper ( Mnih et al., 2015 ) demonstrated the first such algorithm,

hich used Deep Neural Networks to train a Deep RL agent to play Atari

ideo games at a human level. This algorithm identifies the optimal con-

rol strategy for achieving an objective by learning a function that esti-

ates the action values or q -values. This function (i.e. q -function) maps

 given state-action pair ( s t , a t ) to the action value estimate. 

At the beginning of the control problem, the agent does not know

ts environment. This is reflected by assigning random q -values for all

tate-action pairs. Over time, as the agent takes actions, new information

btained from the environment is used to update these initial random

stimates. After each action, the reward obtained from the environment

s used to incorporate the new knowledge: 

( 𝑠 𝑡 , 𝑎 𝑡 ) ← 𝑞( 𝑠 𝑡 , 𝑎 𝑡 ) + 𝛼

[
𝑟 𝑡 +1 + 𝛾 max 

𝑎 
𝑞( 𝑠 𝑡 +1 , 𝑎 ) − 𝑞( 𝑠 𝑡 , 𝑎 𝑡 ) 

]
(4)

The more actions an agent takes at any given state, the closer it gets

o converging to the true action value function ( Sutton and Barto, 1998 ).

he 𝛼 (step-size) parameter governs how much weight is placed on the

ew knowledge ( Sutton and Barto, 1998 ). 

An agent will choose an action that maximizes its long-term reward.

his process is known as exploitation since it greedily seeks to maximize

 known long-term reward. This may not always be the best choice,

owever, since taking another action may lead the agent to discover a

otentially better action, which it has not yet tried. As such, the agent

lso needs to explore its environment. This is accomplished by taking a

andom action periodically, just in case this action leads to better out-

omes. In such a formulation, the exploration vs. exploitation is addressed

ia a 𝜖-greedy policy, where the agent explores for 𝜖 percent of time and

hooses an action associated with the highest action value for the rest.

his gives the final policy for the RL agent: 

( 𝑠 𝑡 ) = 

{ 

random 𝑎, 𝜖

arg max 
𝑎 

𝑞( 𝑠 𝑡 , 𝑎 ) , 𝑒𝑙𝑠𝑒 (5)

𝜖 is often set at a high value (e.g. 50%) at the start of the learning

rocess and gradually reduced to a lower value (e.g. 1%) as the agent

dentifies a viable control strategy. 

While there have been prior attempts to approximate the action

alue function using Deep Neural Networks, they were met with min-

mal success since the learning is highly unstable ( Mnih et al., 2015 ).

nih et al. (2015) addressed this by introducing a replay buffer and

n additional target Neural Network. The replay buffer acts as the RL

gent’s memory, which records only its most recent experience (e.g. the

ast 10 3 states transitions and rewards). During the training the RL agent

andomly samples data from the replay buffer, computes the neural net-

ork’s loss and updates its weights using stochastic gradient descent: 

𝑜𝑠𝑠 = ||(𝑟 𝑡 + 𝛾 max 
𝑎 ′

𝑞 ∗ ( 𝑠 𝑡 +1 , 𝑎 ′) 
)
− 𝑞( 𝑠 𝑡 , 𝑎 𝑡 ) ||2 (6)

This random sampling enables the training data to be uncorrelated

nd has been found to improve the training process. The target neu-

al network q ∗ has the same network architecture as the main net-

ork q , but acts as a moving target to help stabilize the training pro-

ess by reducing the variance ( Mnih et al., 2015 ). Unlike the neural

etwork approximating q , whose weights are constantly updated using

radient decent, q ∗ weights are updated sporadically (e.g. every 10 4 

imesteps). For more background information, Mnih et al. (2015) and

illicrap et al. (2015) provide an in-depth discussion on the importance

f replay memory and target neural networks in training Deep RL agents.

.3. Evaluation 

Here, we investigate the real-time control of urban stormwater in-

rastructure using Deep Reinforcement Learning. To begin, we formulate
nd evaluate reward functions for the control of an individual stormwa-

er basin. We then extend these lessons to the control of a larger, inter-

onnected stormwater network. Given the relatively nascent nature of

eep RL, the need to account for public safety, and the desire to evalu-

te multiple control scenarios, a real-world evaluation is outside of the

cope of this paper. As such, our analysis will be carried out in simu-

ation as a stepping-stone toward real-world deployment in the future.

o promote transparency and broader adoption, the entire source code,

xamples, and implementation details of our implementation are shared

reely as an open source package 1 . 

.4. Study area 

Motivated by a real-world system, we apply RL control to a stormwa-

er system inspired by an urban watershed in Ann Arbor, Michigan, USA

 2 ). Our choice to use this watershed is motivated by the fact that it has

een retrofitted by our group with wireless sensors and control valves

lready ( Bartos et al., 2017 ) and will, in the future, serve as a real-world

estbed for the ideas proposed in this paper. This headwater catchment

eatures 11 interconnected stormwater basins that handle the runoff

enerated across 4 km 

2 of predominantly urbanized and impervious sub-

atchment areas. A Stormwater Management Model (SWMM) of the wa-

ershed has been developed and calibrated in prior, peer-reviewed stud-

es ( Wong and Kerkez, 2018 ). It is assumed that each controlled basin in

he system is equipped with a 1 m 

2 square gate valve. The valves can be

artially opened or closed during the simulation, which represents the

ction taken by a RL agent. The states of the control problem are given

y the water levels and outflows at each controlled location. Given the

mall size of the study area, as well as the need to constrain this initial

tudy, uniform rainfall across the study area is assumed. Groundwater

ase flow is assumed to be negligible, which has also been confirmed in

rior studies ( Wong and Kerkez, 2018 ). 

.5. Analysis 

Prior Deep RL studies have revealed that performance is dependent

n the formulation of reward function, quality of neural networks ap-

roximating action value function, as well as the size of state space

 Sutton and Barto, 1998; Henderson et al., 2017 ). This creates a number

f “knobs ”, whose sensitivity must be evaluated before any conclusion

an be reached regarding the ability to apply Deep RL to control real

tormwater systems. As such, in this paper, we formulate a series of ex-

eriments across two scenarios to characterize Deep RL’s ability to con-

rol stormwater systems. In the first scenario, we control a single valve

t the outlet of the watershed, comparing its particular performance un-

er various reward function formulations. Given that Deep RL has not

een used to control water systems, this will constrain the size of the

tate space to establish a baseline assessment of the methodology. In

he second scenario, we scale these findings to simultaneously control

ultiple valves across the broader watershed and to analyze sensitivity

o function approximation (neural networks). Finally, the system-scale

cenario is subjected to storm inputs of varying intensities and durations

o provide broader comparison of the benefits of the controlled system

n relation to the uncontrolled system. 

.6. Scenario 1: Control of a single basin 

In this scenario, we train a Deep RL agent to control the most down-

tream detention basin in the network (basin 1 in Fig. 2 ). This basin was

hosen because it experiences the total runoff generated in the water-

hed, and because its actions have direct impact on downstream water

odies. At any given point in time, the RL agent is permitted to set the

https://github.com/kLabUM/rl-storm-control
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Fig. 2. Stormwater system being controlled in 

this paper. The urban watershed includes a 

number of sub-catchments which drain to 11 

stormwater basins of varying storage volumes. 

The first control scenario applies RL to the con- 

trol of a single basins, while the second sce- 

nario evaluates control of multiple basins. The 

colors correspond with the catchment that con- 

tributes local runoff into each basin. Average 

volumes experienced by the ponds during a 25 

year 6 h storm event are presented. 
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asin’s valve to a position between fully closed or open, in 1% incre-

ents (i.e. 0%, 1%, 2%, … , 100% open) based on the water height in

he basin. All other upstream basins remain uncontrolled. 

The overall control objective is to keep the water height (state:{ h t })

n the basin below a flooding threshold 𝐻 max and the outflows from

he basin (state :{ f t }) below a desired downstream flooding or stream

rosion threshold F : 

 𝑡 ≤ 𝐻 𝑚𝑎𝑥 (7)

 𝑡 ≤ 𝐹 (8)

Three reward functions are formulated to reach this objective, each

ncorporating more explicit guidance (in the form of constraints) to

uide the RL agent. 

In the first reward function the RL agent receives a positive reward

or maintaining the basin’s outflow below the specified threshold, a neg-

tive reward for exceeding the threshold, as well as a larger but less

ikely negative reward if the basin overflows: 

 1 ( 𝑠 𝑡 ) = 

⎧ ⎪ ⎨ ⎪ ⎩ 
+1 , 𝑓 𝑡 ≤ 𝐹 

−1 , 𝑓 𝑡 > 𝐹 

−10 , ℎ 𝑡 > 𝐻 𝑚𝑎𝑥 

(9)

The reward function is represented visually in the first row of Fig. 3 .

his reward function formulation is inspired from the classic inverted

endulum problem ( Watkins and Dayan, 1992 ) where the agent receives

1 for success and -1 for failure. 

The second reward function is formulated to exhibit a more com-

lex and gradual reward structure. In lieu of a jagged or discontinuous

plus/minus ” reward structure, the agent is rewarded for reaching flows
hat are close to the desired flow threshold. It has been shown that more

mooth and continuous rewards such as this, may help the agent con-

erge onto a solution faster ( Sutton and Barto, 1998; Aytar et al., 2018 ).

isually, the reward function looks like a parabola ( Fig. 3 ), where the

aximum reward is achieved when the flow threshold is met exactly: 

 2 ( 𝑠 𝑡 ) = 𝑐 1 ( 𝑓 𝑡 − 𝑐 2 )( 𝑓 𝑡 − 𝑐 3 ) (10)

c 1 , c 2 , and c 3 are constants representing the scaling and inflection

oints of the parabola. Here we choose c 1 = -400 e, c 2 = 0.05, and c 3 = 0.15

o maintain the general scale of the first reward function. Note that this

ormulation does not explicitly include the local constraint on the basin’s

ater level since the agent gets implicitly penalized by receiving a neg-

tive reward for low outflows. 

The third reward function seeks to provide the most explicit guidance

o the RL agent by embedding the most relative amount of information

third column, Fig. 3 ). In this heuristic formulation, the agent receives

he highest reward for keeping the basin empty (water levels and flows

qual to zero). Intuitively, this reward formulation seeks to drain all

f the water from the basin as fast as possible without exceeding the

ow and height thresholds. If water level in the pond rises, the agent

ets penalized, thus forcing it to release water. If flows remain below

he flow threshold F, the agent is penalized linearly proportional to the

ater level in the basin, with a more severe factor applied if the height

f the basin exceeds the height threshold H. If the outflow exceeds the

ow threshold F an even more severe penalty is incurred: 

 3 ( 𝑠 𝑡 ) = 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 
𝑐 1 − 𝑐 2 ℎ 𝑡 , ℎ 𝑡 < 𝐻𝑓 𝑡 ≤ 𝐹 

𝑐 1 − 𝑐 3 ℎ 𝑡 , ℎ 𝑡 ≥ 𝐻𝑓 𝑡 ≤ 𝐹 

− 𝑐 4 𝑓 𝑡 − 𝑐 2 ℎ 𝑡 + 𝑐 5 , ℎ 𝑡 < 𝐻𝑓 𝑡 > 𝐹 

− 𝑐 4 𝑓 𝑡 − 𝑐 3 ℎ 𝑡 + 𝑐 5 , ℎ 𝑡 ≥ 𝐻𝑓 𝑡 > 𝐹 

(11)
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The penalty rates are governed by a set of five parameters c = { c 1 , c 2 ,

 3 , c 4 , c 5 }, which were parametrized {2.0, 0.25, 1.5, 10, 3} to match the

cales of the other two reward functions. 

To illustrate the transferability of the control approach to variable

nflows, storage volumes, and the location of a basin in the network,

ontrol by an agent trained on the third reward function is evaluated

n four basins (basins 1, 4, 6, and 9 in Fig. 2 ). These basins are chosen

o represent distinct components in the network. Basin 1 is located at

he outlet of the watershed. Basin 4 is the largest in the network and

eceives flows from the two major branches in the system. Basin 6 is the

argest of the upstream basins, while basin 9 is a smaller basin in series

ith larger basins (please see SI section 5). 

Additionally, to analyze the performance and sensitivity of the agent

o the reward function formulation, two variants of the third reward are

valuated in the supplementary information (please see SI section 4) sec-

ion of this paper. The goal of this analysis is to determine the sensitivity

f the agent’s performance to the choice of mathematical equations in

he reward function. 

.7. Scenario 2: Controlling multiple basins 

This scenario evaluates the ability of an agent to control multiple

istributed stormwater basins. Specifically, basins 1, 3, and 4 ( Fig. 2 ) are

elected for control because they experience the largest average volume

uring a storm event, which often corresponds with the larger control

otential ( Schütze et al., 2008 ). It is assumed that at any time step the

gent has knowledge of the water levels and valve positions for each of

hese basins, as well as the basin between them (basin 2 in Fig. 2 ), thus

uadrupling the number of observed states compared to the control of a

ingle basin. The action space must also be reduced to make the problem

omputationally tractable. For the control of the single basin, there are

01 possible actions at any given time step (valve opening with 1%

ranularity). For three controlled basins, this increases to 101 3 possible

ontrol actions at any given time step. This is not only intractable given

ur own computational resources, but is well beyond the size of any

ction space covered in other RL literature. Here, to reduce the action

pace the agent is allowed to only throttle the valves. Specifically, at any

ime step, agent can only open or close the valve in 5% increments or

eave its position unchanged. This results in only three possible actions

or each site and thus 27 (or 3 3 ) possible actions for the entire network.

The agent receives an individual reward for controlling each basin.

hese rewards are weighted equally and added together to provide a

otal reward for controlling the larger system. The reward for controlling

ach basin is given by: 

 4 ( 𝑠 𝑡 ) = 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 
− 𝑐 1 ℎ 𝑡 + 𝑐 4 , ℎ 𝑡 ≤ 𝐻, 𝑓 𝑡 ≤ 𝐹 

− 𝑐 2 ℎ 
2 
𝑡 
+ 𝑐 3 + 𝑐 4 , ℎ 𝑡 > 𝐻, 𝑓 𝑡 ≤ 𝐹 

− 𝑐 1 ℎ 𝑡 + ( 𝐹 − 𝑓 𝑡 ) 𝑐 5 , ℎ 𝑡 ≤ 𝐻, 𝑓 𝑡 > 𝐹 

− 𝑐 2 ℎ 
2 
𝑡 
+ 𝑐 3 + ( 𝐹 − 𝑓 𝑡 ) 𝑐 5 , ℎ 𝑡 > 𝐻, 𝑓 𝑡 > 𝐹 

(12)

here reward parameters c = { c 1 , c 2 , c 3 , c 4 , c 5 } are chosen as {0.5, 1,

, 1, 10} to retain the relative scale of the single-basin reward formu-

ations. This reward seeks to accomplish practically identical objectives

s the third reward function used in the single-basin control scenario.

he difference is the quadratic penalty term that is applied to the height

onstraint. This modification is made to provide the agent with a more

xplicit guidance in response to the relatively larger state space com-

ared to the single-basin control scenario. In the rare instance that flood-

ng should occur at one of the basins, agent also receives an additional

enalty. 

.8. Simulation, implementation, and evaluation 

Beyond the formulation of the reward function, the use of RL for

he control of stormwater systems faces a number of non-trivial imple-

entational challenges. The first relates to the hydrologic and hydraulic
imulation framework, which needs to support the integration of a sim-

lation engine that is compatible with modern RL toolchains. The sec-

nd challenge relates to the implementation of the actual RL toolchain,

hich must include the Deep Neural Network training algorithms. 

Most popular stormwater modeling packages, such as the Stormwa-

er Management Model (SWMM) ( Rossman, 2010 ) and MIKE Urban

 Elliott and Trowsdale, 2007 ) are designed for event based or long-term

imulation. Namely, the model is initialized, inputs are selected, and the

odel run continues until the rainfall terminates or simulation times

ut. While these packages support some rudimentary controls, the con-

rol logic is pre-configured and limited to simple site-scale action, such

s opening a valve when level exceed a certain value. The ability to sup-

ort system-level control logic is limited, let alone the ability to interface

ith external control algorithms, such as the one proposed in this paper.

o that end, we implement a step-wise co-simulation approach that was

escribed in one of our prior studies Mullapudi et al. (2017) . 

Our co-simulation framework separates the hydraulic solver from

he control logic by halting the hydraulic model at every time step. The

tates from the model (water levels, flows, etc.) are then transferred to

he external control algorithm, which makes recommendation on which

ctions to take (valves settings, pump speeds, etc.). Here, we adopt a

ython-based SWMM package for simulating the stormwater network

 Riaño-Briceño et al., 2016 ). This allows the entire toolchain to be imple-

ented using a high-level programming environment, without requiring

ny major modifications to hydraulic solvers that are often implemented

n low-level programming languages and difficult to fuse with mod-

rn libraries and open source packages. While other or more complex

tormwater or hydrologic models could be substituted, model choice is

ot necessarily the main contribution of this paper. Rather, we content

hat SWMM adequately captures runoff and flow dynamics for the pur-

oses of this paper. SWMM models the flow of water in the network

sing an implicit dynamic wave equation solver ( Rossman (2010) ). This

llows it to effectively model the nuanced conditions (e.g. back chan-

el flows, flooding) that might develop in the network though real-time

ontrol. Furthermore, the authors have access to a calibrated version of

he model for this particular study area, which has been documented in

 prior study ( CDMSmith, 2015; Wong and Kerkez, 2018 ). 

One major task is the implementation of the Deep Neural Network

hat is used to approximate the RL agent’s action value function. Deep

eural Networks are computationally expensive to train ( LeCun et al.,

015b ). Efficient implementation address this by leveraging a com-

uter’s graphical processing unit (GPU) to carry out this training, which

s a non-trivial task. To that end, a number of open source and commu-

ity libraries have emerged, the most popular of which is TensorFlow

 Abadi et al., 2016 ). This state-of-the-art library has been used in some

f the most well-cited RL papers and benchmark problems, which is the

eason we choose to adopt it for this study. TensorFlow is a python li-

rary and can be seamlessly interfaced with our python-based stormwa-

er model implementation. 

Multiple agents are trained and evaluated across the two scenarios:

ight for the control of individual basins (across multiple reward func-

ion variants and basins), and two agents for the multi-basin control. A

eep Neural Network is designed and implemented to learn the action-

alue function of each agent. The network contains 2 layers with 50

eurons per layer. This network is set up with a ReLu activation func-

ion ( Goodfellow et al., 2016 ) in the internal layers and a linear activa-

ion function in the final layer. The full parameters used in the study,

ncluding those for gradient descent and the DQN, are provided in the

I section 2 of this paper. A Root Mean Square Propagation (RMSprop)

 Goodfellow et al., 2016 ) form of stochastic gradient descent is used for

pdating the neural network as this variant of gradient descent has been

bserved to improve convergence. 

One storm event is used to train these agents. The SWMM model is

orced with a 25-year storm event of 6 hour duration and 63.5 mm in-

ensity ( Fig. 3 ). This event generates a total runoff of 3670.639 m 

3 with

 peak flow of 0.35 m 

3 / s at the outlet of watershed. The agents are pro-
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ided with an operational water level goal H of 2 m , flooding level 𝐻 max 
f 3.5 m and outflow exceedance threshold of F of 0 . 10 𝑚 

3 𝑠 −1 . It is im-

ortant to note that the outflow threshold, in particular, serves more as

n approximate guide rather than exact requirement, since the discrete

alve settings used by the RL agents may not allow the exact setpoint to

e physically realizable (e.g. throttling a valve by 5% will limit outflow

recision correspondingly). These setpoints are chosen to reflect real-

stic flooding and stream erosion goals in the study watershed. Agents

re trained on a Tesla K20 GPUs on University of Michigan’s advanced

esearch computing’s high performance cluster. 

The second multi-basin control agent uses the same neural network

rchitecture of the other multi-basin RL control agent, trained this time,

owever, using batch normalization ( Ioffe and Szegedy, 2015 ). Batch nor-

alization is the process of normalizing the signals between the inter-

al layers of the neural network to minimize the internal covariance

hift and has been observed to improve the performance of the Deep

L agents ( Lillicrap et al., 2015 ). Ioffe and Szegedy (2015) provides a

etailed discussion on batch normalization. 

The performance of each agent is evaluated by comparing the RL

ontrolled hydrographs and water levels to those that are specified in

he reward functions. For the agents controlling the individual basins,

his is used to determine the importance of the reward formulation on

erformance, reward convergence, and training period duration. For

he multi-basin control scenario, the same approach is used to quantify

verall performance, comparing this time the agent that uses the batch

ormalized neural network to the agent that uses the non-normalized

etwork. 

To evaluate the ability of a RL agent to control storms that it is not

rained on, a final analysis is carried out. Since the agent controlling

ultiple basins presents the most complex of the scenarios, it is first

rained on one of storms and evaluated on a spectrum of storm events

ith varying return periods (1 to 100 years) and durations (5 min to

4 hours). These storm events are generated based on the SCS type II

urve and historical rainfall intensities for the study region ( Scs, 1986 ).

he performance of the agent across these 70 storms is compared to the

ncontrolled system to evaluate the boarder benefits of real-time con-

rol. For comparison with an other control algorithm, we also implement

nd compare the performance of RL to an Equal Filling Degree controller,

hich seeks to control the volume in each basin to achieve equal rel-

tive filling ( Schütze et al., 2018 ). Implementation details of the equal

lling algorithm can be found in the SI section3. We also evaluate the

erformance of the RL-controller on a back-to-back storm event (3 h

 year event, followed by a 2 h 2 year event). To allow for a compar-

son between the controlled and uncontrolled system, a non-negative

erformance metric is introduced to capture the magnitude and time

hat the system deviates from desired water level and flows thresholds.

pecifically, across a duration T the final performance P adds together

he deviation of all N controlled sites from their desired water level ( P h )

nd flow thresholds ( P f ), where: 

 ℎ ( ℎ ) = 

⎧ ⎪ ⎨ ⎪ ⎩ 
ℎ − 𝐻, ℎ > 𝐻 

ℎ − 𝐻 + 100 ℎ, ℎ > 𝐻 𝑚𝑎𝑥 

0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

(13)

 𝑓 ( 𝑓 ) = 

{ 

10( 𝑓 − 𝐹 ) , 𝑓 > 𝐹 

0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
(14)

 = 

𝑁 ∑
𝑛 =1 

𝑇 ∑
𝑖 =0 

𝑃 ℎ ( ℎ 𝑛 𝑖 ) + 𝑃 𝑓 ( 𝑓 𝑛 𝑖 ) (15)

A relatively lower performance value is more desirable, since it im-

lies that the system is not flooding, nor exceeding desired flow thresh-

lds. 

r  
. Results 

.1. Scenario 1: Control of single basin 

The ability of a RL agent to control a stormwater basin is highly sen-

itive to the reward function formulation. Generally, a more complex

eward function – one that embeds more information and explicit guid-

nce – performs better, as illustrated in Fig. 3 . Each column of the figure

orresponds with an individual RL agent, each of which is trained using

 different reward function ( r 1 , r 2 , r 3 ). The reward functions are plotted

n the first row, while the reward received during training is plotted in

he second row. The training period is quantified in terms of episodes,

ach of which corresponds to one full SWMM simulation across an entire

torm. The third and fourth rows in the figure compare the uncontrolled

ows and water levels, respectively, for the episode that resulted in the

ighest reward. 

The RL agent that uses the simplest reward function has the rela-

ively worst performance ( Fig. 3 , first column). Even after 5000 train-

ng episodes (a week of real-world simulation time), the mean reward

oes not converge to a stable value. Playing back the episode that re-

ulted in the highest reward ( Fig. 3 , rows 3–4, column 1), reveals that

he RL agent does retain more water than would have been held in the

ncontrolled basin. While this lowers the peak flows relative to the un-

ontrolled basin, the RL agent is generally not able to keep flows below

he desired threshold. More importantly, the RL agent’s control actions

egin oscillating and become unstable toward the middle of the sim-

lation. In this episode, the agent keeps the water level in the basin

elatively constant by opening the valve very briefly to release just a

mall amount of water. This “chattering ” behavior (shown as a close up

n the figure) results in an unstable outflow pattern that oscillates in a

tep-wise fashion between 0 m 

3 / s and 0.18 m 

3 / s . For various practical

easons, such rapid control actions are not desirable. Since the RL agent

ever once receives a positive reward, it may have converged onto an

ndesirable local minimum during the training. Providing more time

or training does not appear to resolve this issue, which may also sug-

est that a stable solution cannot be derived using this particular reward

ormulation. 

Embedding more explicit guidance (harder constraints) into the re-

ard formulation improves the control performance of the RL agent

 Fig. 3 , second column). When the second and more continuous reward

unction is used by the agent, the highest reward episode reveals that the

L agent is relatively more effective at maintaining flows at a constant

alue. Unlike the RL agent using the simple step-wise reward function,

he RL agent using the parabolic reward function has more opportunities

o receive smaller, more gradual rewards. During most of the episode,

his increased flexibility allows the second RL agent to receive positive

ewards and keep the outflow below a flow threshold of 0.14 m 

3 / s . While

elatively improved, the RL agent using the parabolic reward also does

ot converge to a stable reward value. However, toward the end of the

pisode, this RL agent also carries out irregular and sudden control ac-

ions by opening and closing the valve in short bursts. In this case, the

L agent is oscillating between a maximum (valve open) and minimum

valve closed) reward rather than taking advantage of variable rewards

n other configurations. This suggests that the agent has either not yet

earned a better strategy or, again, that a stable solution cannot be con-

erged upon using this particular reward formulation. This speaks to the

eed for more explicit constraints as well, since a real-world stormwa-

er system could not be throttled in this fashion. Simply put, the reward

ormulations used in this case was too simple to achieve realistically

esirable outcomes. 

The RL agent using the third and most constrained formulation ex-

ibits the relatively best control performance. This agent regulates flow

nd water levels in a relatively gradual and smooth manner. Unlike in

he case of the other two RL agents, after 3500 training episodes, the

hird agent does converge to a steady reward. Evaluating the episode

esulting in the highest reward ( Fig. 3 , rows 3–4, column 3), the desired
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Fig. 3. RL control of a single basin, trained using three reward formations (grouped by column). The first row plots each reward function used during training. The 

second row plots the average reward received during training (please note that the scale of Y-axis differers for each reward function). The third and fourth rows 

compare the controlled flows and water levels with the uncontrolled, for the episode that resulted in the highest reward. Generally, reward function formulations 

with more explicit guidance lead to relatively better control performance and improved convergence during raining. Agents trained using relatively simple reward 

also exhibit a rapidly-changing and unstable control behavior, shown as a close up in the bottom left plot. 

“  

a  

a  

W  

c  

l  

s  

p  

b  

d  

t  

I  

R  

w  

fl  

t  

c  

d

 

3  

t  

t  

t  

t  

a  

t  

d  

f  

d

 

t  

5  

o  

a  

s  

n  

t  

o  

a

 

s  

c  

t  

p  

w  

B  

e  

w  

h  

c  

1  

d  
flat ” outflow hydrograph is achieved. No unstable or oscillatory control

ctions are evident, as in the case of the other two reward functions. The

gent is able to maintain flows below a constant threshold of 0.15 m 

3 / s .

hile this is not the exact threshold that was specified (0.1 m 

3 / s ), it is

lose considering that the achievable threshold is dependent on water

evels and the ability to only throttle the valve in 1% increments. As

tated in the methods section, matching the exact threshold may not be

hysically realizable in any given situation due to constraints enforced

y discretized throttling. Furthermore, the RL agent must balance the

esired outflow against the possibility of flooding and is thus more likely

o release a greater amount of water than is specified by the threshold.

nterestingly, this agent does not change its valve configuration at all.

ather, it keeps its valve 54% open the entire time of the simulation,

hich allows it to meet a mostly constant outflow given the specific in-

ows. Overall, the general shape of the outflows is improved compared

o the uncontrolled scenario. Furthermore, an added benefit of real-time

ontrol is that the overall volume of water leaving the basin is also re-

uced by 50% due to infiltration. 

Similar to the third reward function, agents trained on the 3a and

b reward functions are successfully able to maintain the outflows close

o the threshold during the stormevent (figure 3 in SI section 4). While

hese reward functions may appear similar, the solution identified by

heir respective agents differs. This is a result of the difference between

he decay rates in the exponential and squared terms. Performance of the

gent trained on the 3a and 3b reward functions (SI section 4) indicates

hat the ability of the agent to identify a viable control strategy is not
ependent on the choice of equations used for the creating the reward

unctions, but rather on the general shape of the reward function in the

omain. 

The agent using the third reward function (trained on basin 1), is able

o control basins 4,6 and 9 without any further modifications (SI section

, figure 4). The agent in this formulation makes its control decisions

nly based on the depth at the current time step and does not incorporate

ny predictions. Hence, the ability of the controller to shape of outflows

hould not dependent on the location of the basin in the network, mag-

itude of inflows or the storage curves. Our simulation results indicate

he same. Though the degree to which the agent is able to achieve the

bjective is governed by these physical constraints, its ability to discover

 solution is not influenced by them. 

This scenario, which focuses on the control of a single site, empha-

izes the importance of the reward function formulation in RL-based

ontrol of stormwater systems. The complexity of the reward formula-

ion plays an important role in allowing the RL agent to learn a control

olicy to meet the desired hydrologic outcomes. The importance of re-

ard formulations has been acknowledged in prior studies ( Sutton and

arto, 1998; Ng et al., 1999 ). Generally, reward functions with more

xplicit guidance lead to a more rapid convergence of a control policy,

hile avoiding unintended control actions, such as the chattering be-

avior seen in Fig. 3 . In fact, prior studies have attributed such erratic

ontrol actions to the use of oversimplified reward functions ( Ng et al.,

999 ), but have offered little specificity or concrete design recommen-

ations that could be used to avoid such actions. As such, our approach
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Fig. 4. Average reward earned by the RL 

agent when learning to control multiple basins. 

The use of neural network batch normaliza- 

tion (blue) leads to consistently higher rewards 

when compared to the use of a generic neural 

network (orange). The batch normalized net- 

work also leads to higher rewards earlier in 

the training process. (For interpretation of the 

references to colour in this figure legend, the 

reader is referred to the web version of this ar- 

ticle.) 
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a  
euristically evaluates reward formulations of increasing complexity un-

il arriving at one that mostly meets desired outcomes. This introduces

n element of design into the use of RL for the real-time control of

tormwater, as one cannot simply rely on the implicit black box nature

f neural networks to solve a control problem under complex system dy-

amics. The reward function needs to embed enough information to help

uide the RL agent to a stable solution. This introduces only a limited

mount of overhead, as reward functions can be intuitively formulated

y someone with knowledge of basic hydrology. 

For control of individual basins, the reward function presented here

hould be directly transferable. If more complex outcomes are desired,

odifications to the reward function may need to be carried out. Objec-

ively, the convergence of the reward will serve as one quality measure

f control performance. The ultimate performance of RL for the control

f individual sites will, however, need to be assessed on a case-by-case

asis by a designer familiar with the application. Taking the baseline

essons learned during the control of a single basin, the second scenario

an now evaluate the simultaneous control of multiple basins. 

.2. Scenario 2: Control of multiple basins 

When trained using the generic feed forward neural network con-

guration that was used for the control of a single basin, the RL agent

ontrolling multiple assets was unable to converge to a stable reward,

ven after 25,000 episodes of training ( Fig. 4 ). This totaled to ≈ 52

ays of computation time on our GPU cluster, after which the training

rocedure was halted due to lack of improved reward. Overall, learn-

ng performance was low in this configuration. Not only did the learn-

ng procedure not converge to a stable reward, but the vast majority of

ewards were negative. Given this observation, this ineffective neural

etwork was then replaced with one that was batch normalized. The

gent using the batch normalized neural network achieved a higher av-

rage reward than the agent with a generic feed forward neural network

 Fig. 4 ). Furthermore, the agent using the batch normalized neural net-

ork achieved a relatively high rewards early on in the training process,

hus making it more computationally favorable. While beyond the scope

f this study, this suggests that the choice of neural network architec-

ure is likely a major design factor in the successful implementation of

L-based stormwater control. 

Even with batch normalization, the RL agent did not consistently re-

urn to the same reward or improve its performance when perturbed.

he exploration in its policy caused the RL agent to oscillate between

ocal reward maxima. Similar outcomes have been observed in a number

f RL benchmark problems ( Henderson et al., 2017; Mnih et al., 2015 ),

hich exhibited a high degree of sensitivity to their exploration pol-

cy. Prior studies have noted that the exploration-exploitation balance

s difficult to parameterize because neural networks tend to latch onto

 local optimum ( Larochelle et al., 2009 ). As such, it is likely that the

ack of convergence observed in this scenario was caused by the use of

 neural network as a function approximator. Forcing neural networks

o escape local minima is still an ongoing problem of research ( Osband

t al., 2016 ). Nonetheless, even without a consistent optimum, the max-
mum reward obtained during this scenario can still be used as part of

n effective control approach. 

Selecting the episode with the highest reward revealed the actions

aken by the RL agent during the training storm ( Fig. 5 ). The figure com-

ares the controlled and uncontrolled states of the four basins during a

5-year 6-hour storm event, showing the depth in each basin, inflows,

utflows, and control actions taken by the RL agent. Though basin 2 is

ot explicitly controlled by the controller, given that the water level and

utflows in this basin are impacted by the actions taken in the upstream

asin, we have chosen to present its response. No flooding occurred

uring this simulation, which means that the reward received by the RL

gent was entirely obtained by meeting outflow objectives. The valves

n basins 1 and 3 throttled between 100% and 95% open, which for all

ractical considerations could be considered uncontrolled. As such, the

L agent in this scenario earned its reward by only controlling the most

pstream basin in this network. 

While the outcome of control was somewhat favorable compared

o the uncontrolled systems, the playback of the highest reward in

ig. 5 does not show drastically different outcomes. Control of the 4 th
asin shifted the timing of the outflows from the basin but did not re-

uce its outflows. This resulted in improvements at the 1 st , 2 nd and 3 rd
asins. By delaying flows from the 4 th basin, the RL agent allowed the

ownstream basins to drain first and to spend less time exceeding the

ow threshold. Interestingly, the RL agent did not control basin 1, even

hile the single-basin control scenario makes it is clear that a more fa-

orable outcome can be achieved with control ( Fig. 3 ). As such, a better

ontrol solution may exist, but converging to such a solution using a

eural network approximator is difficult. This likely has to do with the

arger state action space. While the site-scale RL agent was only observ-

ng water level at one basin, the system level RL agent had to track lev-

ls and flows across more basins, which increases the complexity of the

earning problem. The rewards received by the RL agent in the scenario

re cumulative, which means that improvement at just a few sites can

ead to better rewards, without the need to control all of them. Increas-

ng the opportunity to obtain rewards thus increases the occurrence of

ocal minima during the learning phase. 

In the single basin control scenario, the RL agent can immediately

bserve the impact of its control actions. In the system scale scenario

ore time is needed to observe water flows through the broader system,

hich means that the impact of a control action may not be observed

ntil later timesteps. This introduces a challenge, as the RL agent has

o learn the temporal dynamics of the system. This challenge has been

bserved in other RL studies, which have shown better performance for

eactive RL problems, as opposed to those that are based on the need to

lan for future outcomes ( Aytar et al., 2018 ). The need to include plan-

ing is still an active area of RL research. Potential emerging solutions

nclude adversarial play ( Silver et al., 2017b; 2017a ), model-based RL

 Clavera et al., 2018 ), and policy-based learning ( Schulman et al., 2017 ).

he benefits of these approaches have recently been demonstrated for

ther application domains and should be considered in the future for

he control of water systems. 

It is important to note that Fig. 5 represents an evaluation of the RL

gent for one storm only - namely, the training storm. Realistically, the
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Fig. 5. RL agent controlling multiple stormwa- 

ter basins during a 6-hour, 25-year storm event. 

Control actions at each of the controlled basins 

are shown as valve settings in the fourth row 

of the plot. In this scenario, the agent achieves 

a high reward by just controlling the most up- 

stream control asset (4) and shifting the peak 

of the hydrograph. Difference in the scale of Y- 

axis in second row demonstrates the wide range 

of inflows in the network. 
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2  
ontrol system will need to respond to storms of varying durations and

agnitudes. As an example, the RL agent’s response to a 24-hour, 10-

ear storm is shown in Fig. 6 . Performance of the controller in control-

ing a back-to-back event is presented in SI section6. Here, the RL agent

utperformed the uncontrolled system much more notably compared to

he training storm. The controlled outflows were much closer to the de-

ired threshold, even when only one basin was controlled. This broader

erformance is captured in Fig. 7 , which quantifies performance ( Eq. 15 )

cross a spectrum of storm inputs. Fig. 7 compares the uncontrolled sys-

em to the RL controlled system. Both the controlled and uncontrolled

ystems perform equally well during small-magnitude and short events

e.g. the training storm in Fig. 5 ). The benefits of control become more

ronounced for larger events, starting at 10-year storms and those that

ast over 2 hours. This visualization holistically captures the benefits of

eal-time control by highlighting new regions of performance and show-

ng how control can push existing infrastructure to perform beyond its

riginal design. 

. Discussion 

Given the recent emergence and popularity of Reinforcement Learn-

ng, much research still remains to be conducted to evaluate its poten-

ial to serve as a viable methodology for the RTC of water systems. Our

tudy brings to light a number of benefits and challenges associated with

his task. Arguably, it seems that the major benefit of using RL to con-

rol water systems is the ability to simply hand the learning problem

o a computer without needing to worry about the many complexities,

on-linearities and formulations that often complicate other control ap-

roaches. However, as this study showed, this comes with a number

f considerable caveats. These include the challenges associated with

ormulating rewards, choosing function approximators, deciding on the

omplexity of the control problem, as well as contending with practical

mplementation details. 

Our study confirms that the performance of RL-based stormwater

ontrol is sensitive to the formulation of the reward function, which has

lso been observed in other application domains ( Ng et al., 1999 ). The

ormulation of the reward function requires domain expertise and an ele-

ent of subjectivity, since the RL agent has to be given guidance on what
onstitutes appropriate actions. In the first scenario, it was shown that

 reward function that is too simple may lead to adverse behavior, such

s the chattering or sudden actions. The reward may also not converge

o a stable solution since the neural network can take advantage of the

imple objective to maximize rewards using sudden or unintuitive ac-

ions. The formulation of the problem, which depends heavily on neural

etworks, also makes it difficult to determine why one specific reward

unction may work better than another. Increasing the complexity of the

eward function, by incorporating more explicit guidance, was shown to

elp guide the RL agent to a more desirable outcome. In other control

pproaches, such as genetic algorithms or model predictive control, the

esign of reward is an iterative process, and sometimes involves antici-

ating fringe cases to improve the robustness of the controller. Similar

o these approaches, we can however begin using this early study to for-

ulate a number of practical considerations when formulating reward

unctions: 

• Define the reward function for entire domain of the state-action

space, ensuring that it distinguishes the desirable actions from the

undesirable ones. 

• Ensure that the reward function represents a specific hydrologic re-

sponse that the controller is to achieve, while anticipating, as much

as possible, alternate and adverse hydrologic responses that the con-

troller may discover to maximize the reward function. 

• Relax the mathematical formulation of the reward function and focus

rather on the two above points (e.g. the shape of a reward surface

rather than its specific mathematical form). 

Reward formulations are an ongoing research area in the RL commu-

ity and some formal methods have recently been proposed to provide

 more rigorous framework for reward synthesis ( Fu et al., 2017 ). These

ormulations should be investigated in the future. 

Even when the choice of reward function is appropriate or justifi-

ble, the control performance can become sensitive to the approxima-

ion function, which in our case took the form of a Deep Neural Net-

ork. Choosing the architecture and structure of the underlying net-

ork becomes an application dependent task and can often only be de-

ived through trial and error ( Sutton and Barto, 1998; Henderson et al.,

017 ). Secondly, for challenging control problems, such as the one stud-
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Fig. 6. RL agent controlling multiple stormwater basins during a 24-hour, 10-year storm event. Control actions at each of the controlled basins are shown as valve 

settings in the fourth row of the plot. In this scenario, the agent achieves a high reward, by maximizing the storage utilization in the most upstream control asset (4) 

and regulating the outflow from it to meet the downstream objectives. Difference in the scale of Y-axis in second row demonstrates the wide range of inflows in the 

network. 

Fig. 7. Normalized performance of stormwa- 

ter system ( Eq. 15 ) for the uncontrolled sys- 

tem (left) and RL controlled system (right). 

The use of control enhances the performance 

stormwater network by allowing the system 

to achieve desired outcomes across larger and 

longer storms. The lighter color (closer to zero) 

corresponds with a relatively better perfor- 

mance. 
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ed here, learning the mapping between rewards and all possible control

ecisions becomes a complex task. The neural network must be exposed

o as many inputs and outputs as possible, which is computationally de-

anding. In our study we ran simulations for many real-world months

n a high performance cluster, but it appears that the learning phase

ould have continued even longer. This, in fact, has been the approach of

any successful studies in the RL community, where the number of com-

uters and graphical processing units can be in the hundreds ( Espeholt

t al., 2018; OpenAI, 2018 ). This was not feasible given our own re-

ources, but could be evaluated in the future. 

Aside from the formulation of the learning functions and frame-

ork, the actual complexity and objectives of the control problem may
ose a barrier to implementation. We showed that a RL agent can learn

ow to control a single stormwater basin effectively, but that control-

ing many sites at the same time is difficult. A major reason is the in-

rease in the number of states and actions that must be represented

sing the neural network. While computational time may remedy this

oncern, the structure of the neural network may also need to be al-

ered. In a system-scale stormwater scenario, actions at one location

ay influence another location at a later time. As such, the agent

ould benefit from a planning-based approach which considered not

nly current states, but future forecasts as well. Such planning-based

pproaches have been proposed in the RL literature and should be in-

estigated to determine if they lead to an improvement in performance
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 Clavera et al., 2018; Depeweg et al., 2016 ). Furthermore, model-based

pproaches have also recently been introduced and could allow some el-

ments of the neural network to be replaced with an actual physical or

umerical stormwater model ( Gu et al., 2016 ). Such approaches should

e evaluated in the future since they may permit more domain knowl-

dge from water resources to be embedded into training the controller.

It is important to note that the Equal-filling algorithm outperforms

he RL agent in this study (SI section 3). It achieves the objective of

aintaining the outflow below the desired threshold without causing

ooding. Since Equal-filling outperforms RL, it could very well be con-

idered a superior choice in this study. That said, developing and deploy-

ng Equal-filling often requires an intuitive understanding of the system

nd require a highly manual tuning of parameters. While it may be rel-

tively straightforward to design control approaches in smaller systems

nd simple outcomes —such as the one in this study — developing coor-

inated control strategies for large scale systems with multiple-objective

ight not be as easy. As such, we see RL-based control as a long-term

oal, which should be investigated in future studies across bigger scales

nd complex outcomes. Our study presents an initial goal toward the

roader study of RL-based stormwater control, after which an compre-

ensive apples-to-apples comparison may be possible with current state-

f-the-art approaches. 

Finally, the use of RL for the control of stormwater systems is under-

inned by a number of practical challenges. Computational demands

re very high, especially compared to competing approaches, such as

ynamical systems control, model predictive control, or load-balancing

pproachs ( Troutman et al., 2020 ). While computational resources are

ecoming cheaper, the resources require to carry out this study were

uite significant and time demanding. Since actions taken by neural

etworks cannot easily be explained and explicit guarantees cannot be

rovided, this may limit adoption by decision makers who may consider

he approach a “black box ”. It is also unlikely that the control of real-

orld stormwater systems will simply be handed over to a computer that

earns through mistakes. Rather, simulation-based scenarios will be re-

uired first. It has recently been shown as long as a realistic simulator is

sed — in our case SWMM — then the agent can be effectively trained

n a virtual environment before refining its strategy in the real world

 OpenAI, 2018 ). 

. Conclusion 

This paper introduced an algorithm for the real-time control of ur-

an drainage systems based on Reinforcement Learning (RL). While RL

as been used successfully in the computer science communities, to

ur knowledge this is the first instance for which it has been explicitly

dopted for the real-time control of urban water systems. The method-

logy and our implementation show promise for using RL as an auto-

ated tool-chain to learn control rules for simple storage assets, such

s individual storage basin. However, the use of RL for more complex

ystem topologies faces a number of challenges, as laid out in the discus-

ion. Simultaneously controlling multiple distributed stormwater assets

cross large urban areas is a non-trivial problem, regardless of the con-

rol methodology. To that end, the concepts, initial results and formula-

ions provided by this paper should help build a foundation to support

L as a viable option for stormwater control. The source code accompa-

ying this paper should also allow others to evaluate many other possi-

le architectures and parameterizations that could be used to improve

he results presented in the paper. 
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